?Can a machine infer quantum mechanics

QUEST Center event
No
Speaker
Shay Hacohen Gourgy
Date
21/02/2019 - 14:15Add to Calendar 2019-02-21 14:15:00 2019-02-21 14:15:00 ?Can a machine infer quantum mechanics At its core, Quantum Mechanics is a theory developed to describe fundamental observations in the spectroscopy of solids and gases. Despite these practical roots, however, quantum theory is infamous for being highly counterintuitive, largely due to its intrinsically probabilistic nature. Neural networks have recently emerged as a powerful tool that can extract non-trivial correlations in vast datasets. They routinely outperform state-of-the-art techniques in language translation, medical diagnosis and image recognition. It remains to be seen if neural networks can be trained to predict stochastic quantum evolution without a priori specifying the rules of quantum theory. I will show  how we trained a recurrent neural network to infer the individual quantum trajectories associated with the evolution of a superconducting qubit under unitary evolution, decoherence and continuous measurement from raw observations only. The network extracts the system Hamiltonian, measurement operators and physical parameters. It is also able to perform tomography of an unknown initial state without any prior calibration. This method has potential to greatly simplify and enhance tasks in quantum systems such as noise characterization, parameter estimation, feedback and optimization of quantum control.    Arxiv:1811.12420    Nano 9th floor המחלקה לפיזיקה physics.dept@mail.biu.ac.il Asia/Jerusalem public
Place
Nano 9th floor
Abstract

At its core, Quantum Mechanics is a theory developed to describe fundamental observations in the spectroscopy of solids and gases. Despite these practical roots, however, quantum theory is infamous for being highly counterintuitive, largely due to its intrinsically probabilistic nature. Neural networks have recently emerged as a powerful tool that can extract non-trivial correlations in vast datasets. They routinely outperform state-of-the-art techniques in language translation, medical diagnosis and image recognition. It remains to be seen if neural networks can be trained to predict stochastic quantum evolution without a priori specifying the rules of quantum theory. I will show  how we trained a recurrent neural network to infer the individual quantum trajectories associated with the evolution of a superconducting qubit under unitary evolution, decoherence and continuous measurement from raw observations only. The network extracts the system Hamiltonian, measurement operators and physical parameters. It is also able to perform tomography of an unknown initial state without any prior calibration. This method has potential to greatly simplify and enhance tasks in quantum systems such as noise characterization, parameter estimation, feedback and optimization of quantum control.   

Arxiv:1811.12420   

תאריך עדכון אחרון : 05/12/2022