Magnetic Refrigeration – efficient and environmentally friendly cooling

Speaker
Nini Pryds - Department of Energy Conversion and Storage, Technical University of Denmark, Risø DTU Campus, Denmark
Date
20/06/2013 - 15:15Add to Calendar 2013-06-20 15:15:00 2013-06-20 15:15:00 Magnetic Refrigeration – efficient and environmentally friendly cooling Magnetic refrigeration is a promising technology for energy efficient and environmentally friendly cooling. Magnetic refrigeration is based on a fundamental thermodynamic property of magnetic materials: the so-called magnetocaloric effect, which causes a temperature change if the material is subject to an applied magnetic field under adiabatic conditions. This changes of the temperature upon magnetization and demagnetization is used to generate cooling and the magnetocaloric effect is most pronounced in the vicinity of a magnetic phase transition of the material, e.g. from a non-ordered (paramagnetic) to a ferromagnetic state. In the Department of Energy Conversion and Storage, we have been working on magnetic refrigeration since 2001. This presentation focuses on the crucial challenges for the technology: development of magnetocaloric materials, high‐field permanent magnets, and the design and optimization of the entire system. Finally, recent results of our magnetic refrigeration prototype will be presented.   nipr@dtu.dk Resnick Building (209), seminar room 210 המחלקה לפיזיקה physics.dept@mail.biu.ac.il Asia/Jerusalem public
Place
Resnick Building (209), seminar room 210
Abstract

Magnetic refrigeration is a promising technology for energy efficient and environmentally friendly cooling. Magnetic refrigeration is based on a fundamental thermodynamic property of magnetic materials: the so-called magnetocaloric effect, which causes a temperature change if the material is subject to an applied magnetic field under adiabatic conditions. This changes of the temperature upon magnetization and demagnetization is used to generate cooling and the magnetocaloric effect is most pronounced in the vicinity of a magnetic phase transition of the material, e.g. from a non-ordered (paramagnetic) to a ferromagnetic state. In the Department of Energy Conversion and Storage, we have been working on magnetic refrigeration since 2001. This presentation focuses on the crucial challenges for the technology: development of magnetocaloric materials, high‐field permanent magnets, and the design and optimization of the entire system. Finally, recent results of our magnetic refrigeration prototype will be presented.

 

nipr@dtu.dk

תאריך עדכון אחרון : 02/06/2013