Active polymerized membranes: nonequilibrium self-assembly and self-organized dynamics

Seminar
QUEST Center event
No
Speaker
Itamar Kolvin
Date
11/01/2023 - 11:30 - 10:30Add to Calendar 2023-01-11 10:30:10 2023-01-11 11:30:11 Active polymerized membranes: nonequilibrium self-assembly and self-organized dynamics The emergence of order from disorder is the common counter-intuitive property of complex systems. In mixtures of sterically interacting colloids and nonadsorbing polymers, for instance, colloidal crystals may self-assemble to maximize the polymers’ entropy. In contrast to such equilibrium examples, a basic description of nonequilibrium self-organization remains a challenge. I will present experiments where material organization is governed by stresses that are exerted by mechanically active microscopic components. Active chaotic flows drive the assembly and large-scale dynamics of polymerized membranes in an aqueous environment. Initially, homogeneously and isotropically distributed actin filament bundles condense into a thin layer where they connect to form a porous elastic membrane. The polymerized membranes then exhibit out-of-plane bending fluctuations that exceed thermal motions by orders of magnitude. Active bending endows the fluctuating membranes with in-plane soft degrees of freedom that coarsen into large, millimeter-scale, strain fluctuations. For membranes that are a few millimeters in width, system-size displacement oscillations appear that are coupled to unidirectional flow waves. Active stress is thus an emerging paradigm for the assembly and dynamics of matter. I will discuss future extensions of this principle. (Itamar is a faculty candidate) ZOOM: https://us02web.zoom.us/j/85104067659 המחלקה לפיזיקה physics.dept@mail.biu.ac.il Asia/Jerusalem public
Place
ZOOM: https://us02web.zoom.us/j/85104067659
Abstract

The emergence of order from disorder is the common counter-intuitive property of complex systems. In mixtures of sterically interacting colloids and nonadsorbing polymers, for instance, colloidal crystals may self-assemble to maximize the polymers’ entropy. In contrast to such equilibrium examples, a basic description of nonequilibrium self-organization remains a challenge. I will present experiments where material organization is governed by stresses that are exerted by mechanically active microscopic components. Active chaotic flows drive the assembly and large-scale dynamics of polymerized membranes in an aqueous environment. Initially, homogeneously and isotropically distributed actin filament bundles condense into a thin layer where they connect to form a porous elastic membrane. The polymerized membranes then exhibit out-of-plane bending fluctuations that exceed thermal motions by orders of magnitude. Active bending endows the fluctuating membranes with in-plane soft degrees of freedom that coarsen into large, millimeter-scale, strain fluctuations. For membranes that are a few millimeters in width, system-size displacement oscillations appear that are coupled to unidirectional flow waves. Active stress is thus an emerging paradigm for the assembly and dynamics of matter. I will discuss future extensions of this principle.

(Itamar is a faculty candidate)

תאריך עדכון אחרון : 03/01/2023