Reflective Photonic Limiters Based on Resonant Transmission

Seminar
QUEST Center event
No
Speaker
Eleanan Makri, Queens College, CUNY, New York, USA
Date
13/02/2019 - 15:00 - 14:00Add to Calendar 2019-02-13 14:00:00 2019-02-13 15:00:00 Reflective Photonic Limiters Based on Resonant Transmission Photonic limiters are protection devices which transmit electromagnetic radiation at low-level incident intensity while blocking high-intensity electromagnetic signals. Passive limiters typically block excessive radiation by means of absorption, which can often cause their destruction due to overheating. We propose the design of a reflective limiter based on resonant transmission through a defect localized mode. The benefit of this design is that it offers protection by reflecting the excessive radiation instead of absorbing it, which reduces overheating problems and results in a device with an extended dynamic range. In this talk, I will present implementations of this idea in band-gap systems in (i) the infrared domain, based on multilayer photonic crystals, and (ii) the microwave domain, based on chiral or CT symmetric coupled resonator waveguide arrays. Nano Center, 9th floor seminar room המחלקה לפיזיקה physics.dept@mail.biu.ac.il Asia/Jerusalem public
Place
Nano Center, 9th floor seminar room
Abstract

Photonic limiters are protection devices which transmit electromagnetic radiation at low-level incident intensity while blocking high-intensity electromagnetic signals. Passive limiters typically block excessive radiation by means of absorption, which can often cause their destruction due to overheating. We propose the design of a reflective limiter based on resonant transmission through a defect localized mode. The benefit of this design is that it offers protection by reflecting the excessive radiation instead of absorbing it, which reduces overheating problems and results in a device with an extended dynamic range. In this talk, I will present implementations of this idea in band-gap systems in (i) the infrared domain, based on multilayer photonic crystals, and (ii) the microwave domain, based on chiral or CT symmetric coupled resonator waveguide arrays.

תאריך עדכון אחרון : 11/02/2019