Attosecond science on the nano-scale

Seminar
QUEST Center event
Yes
Speaker
Michael Krueger, Weizmann Institute of Science (Physics Candidate)
Date
12/12/2018 - 15:00 - 14:00Add to Calendar 2018-12-12 14:00:00 2018-12-12 15:00:00 Attosecond science on the nano-scale Attosecond science is based on steering electrons by the electric field of a strong laser pulse. It has enabled the observation of electron dynamics in atoms, molecules and solids on its natural time scale, the attosecond domain (1as = 10-18s). In my talk, I will show that attosecond science can be extended to the nano-scale, opening up a new perspective for nanoscience and ultrafast spectroscopy. In a pioneering experiment, we demonstrate that electron emission from a metallic nanostructure can be controlled by the waveform of the electric field of a laser pulse. Depending on the absolute phase of the pulse, high-energy electrons are emitted within one or two time windows of attosecond duration. We also show how strong-field-driven photoemission can be used to sense electric fields with attosecond and nanometer resolution, providing new tools for nano-optics and nonlinear optics. Our research bears the prospect of realizing lightwave electronics, where a laser field can induce and control electric currents at optical (PHz) frequencies.   Nano Center, 9th floor seminar room המחלקה לפיזיקה physics.dept@mail.biu.ac.il Asia/Jerusalem public
Place
Nano Center, 9th floor seminar room
Abstract

Attosecond science is based on steering electrons by the electric field of a strong laser pulse. It has enabled the observation of electron dynamics in atoms, molecules and solids on its natural time scale, the attosecond domain (1as = 10-18s). In my talk, I will show that attosecond science can be extended to the nano-scale, opening up a new perspective for nanoscience and ultrafast spectroscopy. In a pioneering experiment, we demonstrate that electron emission from a metallic nanostructure can be controlled by the waveform of the electric field of a laser pulse. Depending on the absolute phase of the pulse, high-energy electrons are emitted within one or two time windows of attosecond duration. We also show how strong-field-driven photoemission can be used to sense electric fields with attosecond and nanometer resolution, providing new tools for nano-optics and nonlinear optics. Our research bears the prospect of realizing lightwave electronics, where a laser field can induce and control electric currents at optical (PHz) frequencies.

 

תאריך עדכון אחרון : 15/11/2018