Quantum control with nanomechanical oscillators
Seminar
QUEST Center event
Yes
Speaker
Dr. Itay Shomroni, EPFL Lausanne, Switzerland (Physics candidate)
Date
14/11/2018 - 15:00 - 14:00Add to Calendar
2018-11-14 14:00:00
2018-11-14 15:00:00
Quantum control with nanomechanical oscillators
Quantum optomechanics, the study of mechanical motion in the quantum regime using light, is an emerging field with applications ranging from sensing to quantum information to exploring the classical-to-quantum transition. Although its foundations had been laid in the 60s and 70s, quantum effects in macroscopic mechanical motion, such as motional sideband asymmetry, radiation pressure shot noise, and ponderomotive squeezing, have been observed only in the recent decade, following advances in high-finesse microcavities. Mechanical oscillators based on photonic crystals are one of the most promising systems for probing and manipulating quantum motion, allowing efficient cooling to the motional ground state using light as well as quantum-coherent operations. I will describe my recent research with these systems, which includes the first demonstration of backaction-evading measurement of mechanical motion in the optical domain. Such measurement, originally proposed in the context of gravitational wave detection, allows in principle arbitrary sensitivity by measuring only a single quadrature of the motion, beating the quantum limit imposed by Heisenberg's uncertainty relation. In addition, entering the regime of strongly-probed mechanical systems close to their ground state has revealed novel phenomena such as interplay of optomechanics and other Kerr-type effects, and new dynamics that can lead to extraordinary instabilities. Quantum optomechanics is now entering a new era where full quantum control is feasible, and I will give my outlook and possible future directions.
Nano Center, 9th floor seminar room
המחלקה לפיזיקה
physics.dept@mail.biu.ac.il
Asia/Jerusalem
public
Place
Nano Center, 9th floor seminar room
Abstract
Quantum optomechanics, the study of mechanical motion in the quantum regime using light, is an emerging field with applications ranging from sensing to quantum information to exploring the classical-to-quantum transition. Although its foundations had been laid in the 60s and 70s, quantum effects in macroscopic mechanical motion, such as motional sideband asymmetry, radiation pressure shot noise, and ponderomotive squeezing, have been observed only in the recent decade, following advances in high-finesse microcavities. Mechanical oscillators based on photonic crystals are one of the most promising systems for probing and manipulating quantum motion, allowing efficient cooling to the motional ground state using light as well as quantum-coherent operations. I will describe my recent research with these systems, which includes the first demonstration of backaction-evading measurement of mechanical motion in the optical domain. Such measurement, originally proposed in the context of gravitational wave detection, allows in principle arbitrary sensitivity by measuring only a single quadrature of the motion, beating the quantum limit imposed by Heisenberg's uncertainty relation. In addition, entering the regime of strongly-probed mechanical systems close to their ground state has revealed novel phenomena such as interplay of optomechanics and other Kerr-type effects, and new dynamics that can lead to extraordinary instabilities. Quantum optomechanics is now entering a new era where full quantum control is feasible, and I will give my outlook and possible future directions.
תאריך עדכון אחרון : 07/11/2018