Proximity-induced triplet superconductivity in systems comprising ferromagnets, graphene and chiral-molecules
In the vast majority of superconductors, the Cooper pairs are formed from electrons with an antiparallel spin alignment and are in the spin-singlet state. In contrast, there are very few materials that show evidence for the exotic state of triplet superconductivity, in which the Cooper pairs comprise electrons with parallel spins. Such a state was predicted to emerge, under some conditions, at superconductor-ferromagnet (S-F) interfaces, and may be important for superconducting-spintronic devices. First experimental evidence for triplet superconductivity was provided by observations of long-range (much larger than the coherence length in F) spin-polarized supercurrents in S-F-S devices. To address this problem from a different angle, we employed scanning tunneling spectroscopy (STS) on various S-F bilayer systems, and our tunneling spectra reveal long-range penetration of superconducting correlations into the ferromagnet, consistent with spin-aligned triplet-pairing with a p-wave order-parameter symmetry. I will also discuss two other systems that showed clear signatures of p-wave triplet-superconductivity in the tunneling spectra. The first consists of a-helix chiral molecules deposited on Nb (a conventional superconductor), and the second comprises single layer graphene deposited on the electron-doped cuprate superconductor Pr1.85CeCuO4.
תאריך עדכון אחרון : 13/06/2017