NV centers in diamond –quantum coherence, noise and nanoscale MRI

Seminar
Speaker
Dr. Nir Bar-Gill, The Racah Institute of Physics, Hebrew University
Date
02/12/2015 - 15:00 - 14:00Add to Calendar 2015-12-02 14:00:00 2015-12-02 15:00:00 NV centers in diamond –quantum coherence, noise and nanoscale MRI Nitrogen-Vacancy (NV) color centers in diamond provide a unique nanoscale quantum spin system embedded in a solid-state structure. As such they are well suited for studies in a wide variety of fields, with emerging applications ranging from quantum information processing to magnetic field sensing and nano-MRI (Magnetic Resonance Imaging). Importantly, NVs possess unique optical transitions which allow for optical initialization and readout of their quantum spin state. In this talk I will introduce the field of NV centers, and describe our research into understanding and controlling these systems, with the goal of enabling fundamental research and future applications. I will present the techniques used for manipulation of the NV centers, and for enhancing their quantum coherence lifetime. Specifically, I will describe our recent work on extending the coherence time of arbitrary quantum states [1], and on spectrally characterizing the noise which limits coherence in shallow NVs [2]. I will then demonstrate how these approaches can be used for magnetic field sensing and nanoscale NMR (Nuclear Magnetic Resonance) and MRI.  [1] D. Farfurnik et. al., PRB 92, 060301(R) (2015) [2] Y. Romach et. al., PRL 114, 017601 (2015) seminar room on the 9th floor of the Nano-center המחלקה לפיזיקה physics.dept@mail.biu.ac.il Asia/Jerusalem public
Place
seminar room on the 9th floor of the Nano-center
Abstract

Nitrogen-Vacancy (NV) color centers in diamond provide a unique nanoscale quantum spin system embedded in a solid-state structure. As such they are well suited for studies in a wide variety of fields, with emerging applications ranging from quantum information processing to magnetic field sensing and nano-MRI (Magnetic Resonance Imaging). Importantly, NVs possess unique optical transitions which allow for optical initialization and readout of their quantum spin state.

In this talk I will introduce the field of NV centers, and describe our research into understanding and controlling these systems, with the goal of enabling fundamental research and future applications.

I will present the techniques used for manipulation of the NV centers, and for enhancing their quantum coherence lifetime. Specifically, I will describe our recent work on extending the coherence time of arbitrary quantum states [1], and on spectrally characterizing the noise which limits coherence in shallow NVs [2]. I will then demonstrate how these approaches can be used for magnetic field sensing and nanoscale NMR (Nuclear Magnetic Resonance) and MRI. 


[1] D. Farfurnik et. al., PRB 92, 060301(R) (2015)

[2] Y. Romach et. al., PRL 114, 017601 (2015)

תאריך עדכון אחרון : 05/12/2022