Precision searches for new physics using optically levitated sensors
In an attempt to provide further insight into one of the major questions of physics beyond the standard model, highly sensitive optomechanical sensors are developed utilizing techniques from the field of atomic physics. These sensors are table-top experimental tools offering exquisite control of mechanical, rotational and electrical degrees of freedom of optically levitated ~fg-ng masses in vacuum, enabling unprecedented acceleration and force sensitivities.
I will present two recent searches, the first looking for recoils from passing DM particles and the second for deviations from charge neutrality and so-called "millicharged particles". For certain, well-motivated dark matter models, these searches exceed the sensitivity of even large-scale experiments, thereby offering a complementary approach. I will also discuss possible techniques enabling sensor sensitivity to dark matter in the low-mass regime, where large, existing detectors lack in sensitivity.
Last Updated Date : 12/12/2021