Nonlinearity Engineering: from mode-locked lasers to orchestrating self-assembly

Seminar
QUEST Center event
Yes
Speaker
Prof. Ömer Ilday, Bilkent University, Turkey
Date
10/05/2017 - 16:00 - 15:00Add to Calendar 2017-05-10 15:00:00 2017-05-10 16:00:00 Nonlinearity Engineering: from mode-locked lasers to orchestrating self-assembly Looking at how structure and functionality arise in Nature, the role of emergent phenomena is evident and ubiquitous, from pattern formation in a sand pile, all the way up, in complexity, to the primate brain. In contrast, we rarely see deliberate use of these principles in human-made systems. Could we incorporate the same principles of operation and adaptability of, say, a bacterium, in a way that complements traditional engineering?  We propose that superior technological functionalities that are difficult or impossible to achieve with linear and near-thermal-equilibrium systems can be obtained by exploiting nonlinear dynamics far from equilibrium. I will begin by briefly describing our main experimental tool, the mode-locked laser, which generates intensely powerful pulses that we use to deliver the energy that drives our systems far from equilibrium. It is telling that mode-locking, itself a self-organized, emergent phenomenon with great technological applications, has provided much of our early guidance about controlling such systems. I will then exemplify how we orchestrate the complex dynamics of physically very different systems, whereby we exert control over spatial scales that vary from the sub-micron to the atomic and vastly improve or introduce unprecedented new capabilities, addressing long-standing engineering problems in each case.  Nanotechnology center - 9th floor seminar room Department of Physics physics.dept@mail.biu.ac.il Asia/Jerusalem public
Place
Nanotechnology center - 9th floor seminar room
Abstract

Looking at how structure and functionality arise in Nature, the role of emergent phenomena is evident and ubiquitous, from pattern formation in a sand pile, all the way up, in complexity, to the primate brain. In contrast, we rarely see deliberate use of these principles in human-made systems. Could we incorporate the same principles of operation and adaptability of, say, a bacterium, in a way that complements traditional engineering? 

We propose that superior technological functionalities that are difficult or impossible to achieve with linear and near-thermal-equilibrium systems can be obtained by exploiting nonlinear dynamics far from equilibrium. I will begin by briefly describing our main experimental tool, the mode-locked laser, which generates intensely powerful pulses that we use to deliver the energy that drives our systems far from equilibrium. It is telling that mode-locking, itself a self-organized, emergent phenomenon with great technological applications, has provided much of our early guidance about controlling such systems. I will then exemplify how we orchestrate the complex dynamics of physically very different systems, whereby we exert control over spatial scales that vary from the sub-micron to the atomic and vastly improve or introduce unprecedented new capabilities, addressing long-standing engineering problems in each case. 

Last Updated Date : 03/05/2017