Self-organization in fluids of particles with random interactions

Seminar
Speaker
Lenin Shagolsem
Date
17/12/2014 - 12:30Add to Calendar 2014-12-17 12:30:00 2014-12-17 12:30:00 Self-organization in fluids of particles with random interactions Inspired by biological systems in which thousands of different types of proteins interact within a cell, we use molecular dynamics simulations in 2d to study multi-component systems in the large number of species limit, i.e., all particles differ from each other (APD systems). All the particles are assumed to be of the same size and interact via the Lennard-Jones (LJ) potential, but their pair interaction parameters are generated at random from a uniform or a peaked distribution. We analyze both the global and the local properties of these systems at temperatures above the freezing transition and find that APD fluids relax into a self-organized state characterized by clustering of particles according to the values of their pair interaction parameters.  Colloquium Room Department of Physics physics.dept@mail.biu.ac.il Asia/Jerusalem public
Place
Colloquium Room
Abstract

Inspired by biological systems in which thousands of different types of proteins interact within a cell, we use molecular dynamics simulations in 2d to study multi-component systems in the large number of species limit, i.e., all particles differ from each other (APD systems). All the particles are assumed to be of the same size and interact via the Lennard-Jones (LJ) potential, but their pair interaction parameters are generated at random from a uniform or a peaked distribution. We analyze both the global and the local properties of these systems at temperatures above the freezing transition and find that APD fluids relax into a self-organized state characterized by clustering of particles according to the values of their pair interaction parameters. 

Last Updated Date : 07/12/2014