Universality in Network Dynamics

Seminar
Speaker
Dr. Baruch Barzel 
Date
13/01/2014 - 18:00 - 16:30Add to Calendar 2014-01-13 16:30:00 2014-01-13 18:00:00 Universality in Network Dynamics One of the major achievements of statistical mechanics is the development of theoretical tools to bridge between the microscopic description of a system and its observed macroscopic behavior, tracking the emergence of large-scale phenomena from the mechanistic description of the system’s interacting components. A key factor in determining this emergent behavior is associated with the underlying geometry of the system’s interactions - a natural notion when treating structured systems, yet difficult to generalize when approaching complex systems. Indeed, social, biological and technological systems feature highly random and non-localized interaction patterns, which challenge the classical connection between structure, dimensionality and dynamics, and hence confront us with a potentially new class of dynamical behaviors. To observe these behaviors we focus, both empirically and theoretically, on the system's response to external perturbations, helping us uncover the unique dynamical universality classes that characterize complex systems. Relevant papers:  Universality in network dynamics Nature Physics. 9, 673–681 (2013) doi:10.1038/nphys2741 Network link prediction by global silencing of indirect correlations, Nature Biotechnology 31, 720–725 (2013) doi:10.1038/nbt.2601 Also featured in 2physics.com - Presenting key developments in physics: http://www.2physics.com/search/label/Complex%20System%203   Resnick Building (209), seminar room 210 Department of Physics physics.dept@mail.biu.ac.il Asia/Jerusalem public
Place
Resnick Building (209), seminar room 210
Abstract

One of the major achievements of statistical mechanics is the development of theoretical tools to bridge between the microscopic description of a system and its observed macroscopic behavior, tracking the emergence of large-scale phenomena from the mechanistic description of the system’s interacting components. A key factor in determining this emergent behavior is associated with the underlying geometry of the system’s interactions - a natural notion when treating structured systems, yet difficult to generalize when approaching complex systems. Indeed, social, biological and technological systems feature highly random and non-localized interaction patterns, which challenge the classical connection between structure, dimensionality and dynamics, and hence confront us with a potentially new class of dynamical behaviors. To observe these behaviors we focus, both empirically and theoretically, on the system's response to external perturbations, helping us uncover the unique dynamical universality classes that characterize complex systems.

Relevant papers: 
Universality in network dynamics Nature Physics. 9, 673–681 (2013) doi:10.1038/nphys2741
Network link prediction by global silencing of indirect correlations, Nature Biotechnology 31, 720–725 (2013) doi:10.1038/nbt.2601
Also featured in 2physics.com - Presenting key developments in physics: http://www.2physics.com/search/label/Complex%20System%203

 

Last Updated Date : 01/01/2014