Fermions in an Optical Box

QUEST Center event
No
Speaker
Prof. Nir Navon, Yale University
Date
13/03/2024 - 13:00 - 12:00Add to Calendar 2024-03-13 12:00:00 2024-03-13 13:00:00 Fermions in an Optical Box For the past two decades harmonically trapped ultracold atomic gases have been used with great success to study fundamental many-body physics in flexible experimental settings. However, the resulting gas density inhomogeneity in those traps makes it challenging to study paradigmatic uniform-system physics (such as critical behavior near phase transitions) or complex quantum dynamics. The realization of homogeneous quantum gases trapped in optical boxes has marked a milestone in the quantum simulation program with ultracold atoms [1]. These textbook systems have proved to be a powerful playground by simplifying the interpretation of experimental measurements, by making more direct connections to theories of the many-body problem that generally rely on the translational symmetry of the system, and by altogether enabling previously inaccessible experiments. 
 I will present a set of studies with ultracold fermions trapped in a box of light [2-4]. This platform is particularly suitable to study problems of Fermi-system stability, of which I will discuss two cases: the spin-1/2 Fermi gas with repulsive contact interactions [2], and the three-component Fermi gas with spin-population imbalance [3]. Both studies lead to surprising results, highlighting how spatial homogeneity not only simplifies the connection between experiments and theory, but can also unveil unexpected outcomes. Finally, I will discuss two ongoing efforts to tackle far-from-equilibrium dynamics of uniform fermions. 
[1] N. Navon, R.P. Smith, Z. Hadzibabic, Nature Phys. 17, 1334 (2021) [2] Y. Ji et al., Phys. Lev. Lett 129, 203402 (2022) [3] G.L. Schumacher et al., arXiv:2301.02237 [4] Y. Ji et al., arXiv:2305.16320 Physics bldg. 202, Seminar hall 303 Department of Physics physics.dept@mail.biu.ac.il Asia/Jerusalem public
Place
Physics bldg. 202, Seminar hall 303
Abstract

For the past two decades harmonically trapped ultracold atomic gases have been used with great success to study fundamental many-body physics in flexible experimental settings. However, the resulting gas density inhomogeneity in those traps makes it challenging to study paradigmatic uniform-system physics (such as critical behavior near phase transitions) or complex quantum dynamics.

The realization of homogeneous quantum gases trapped in optical boxes has marked a milestone in the quantum simulation program with ultracold atoms [1]. These textbook systems have proved to be a powerful playground by simplifying the interpretation of experimental measurements, by making more direct connections to theories of the many-body problem that generally rely on the translational symmetry of the system, and by altogether enabling previously inaccessible experiments. 

I will present a set of studies with ultracold fermions trapped in a box of light [2-4]. This platform is particularly suitable to study problems of Fermi-system stability, of which I will discuss two cases: the spin-1/2 Fermi gas with repulsive contact interactions [2], and the three-component Fermi gas with spin-population imbalance [3]. Both studies lead to surprising results, highlighting how spatial homogeneity not only simplifies the connection between experiments and theory, but can also unveil unexpected outcomes. Finally, I will discuss two ongoing efforts to tackle far-from-equilibrium dynamics of uniform fermions.

[1] N. Navon, R.P. Smith, Z. Hadzibabic, Nature Phys. 17, 1334 (2021)

[2] Y. Ji et al., Phys. Lev. Lett 129, 203402 (2022)

[3] G.L. Schumacher et al., arXiv:2301.02237

[4] Y. Ji et al., arXiv:2305.16320

Last Updated Date : 10/03/2024