Exciting exceptional points in the time domain

QUEST Center event
Yes
Speaker
Dr. Asaf Farhi, Yale University, Applied Physics Department (Physics candidate)
Date
25/01/2023 - 13:00 - 12:00Add to Calendar 2023-01-25 12:00:00 2023-01-25 13:00:00 Exciting exceptional points in the time domain Physical systems can be tuned to an absorbing exceptional point (EP) at which both the eigenfrequencies and eigenmodes associated with perfect capture of an input wave coalesce. We find that a time-domain signature of absorbing EPs is an expansion of the class of waveforms which can be perfectly captured. We show that such systems have improved performance for storage or transduction of energy and that they can be used to convert between waveforms within this class. Finally, we demonstrate that these waveforms can be naturally generated at high frequencies. If time permits, we will explore the possibility of exciting high-order atomic and molecular multipoles in the far field with potential to achieve subatomic resolution, and vibrational modes of helical structures and their coupling to electromagnetic fields. Nanotechnology, 9th floor seminar room Department of Physics physics.dept@mail.biu.ac.il Asia/Jerusalem public
Place
Nanotechnology, 9th floor seminar room
Abstract

Physical systems can be tuned to an absorbing exceptional point (EP) at which both the eigenfrequencies and eigenmodes associated with perfect capture of an input wave coalesce. We find that a time-domain signature of absorbing EPs is an expansion of the class of waveforms which can be perfectly captured. We show that such systems have improved performance for storage or transduction of energy and that they can be used to convert between waveforms within this class. Finally, we demonstrate that these waveforms can be naturally generated at high frequencies. If time permits, we will explore the possibility of exciting high-order atomic and molecular multipoles in the far field with potential to achieve subatomic resolution, and vibrational modes of helical structures and their coupling to electromagnetic fields.

Last Updated Date : 16/01/2023