Magnetic Dipole Light-Matter Interactions in 2D Hybrid Organic/Inorganic Perovskites: What Metamaterials Can Teach Us About Real Materials
The optical properties of materials are universally described within the electric dipole (ED) approximation—atomic-scale optical frequency light-matter interactions are assumed to arise solely from electric dipoles interacting with the electric field component of light. In fact, this inability of matter to interact with the magnetic-field component of light led to the advent of metamaterials and metasurfaces. In this talk, I describe my group’s recent discovery of atomic-scale optical magnetism in 2D Layered Hybrid Organic/Inorganic Pervoskites (2D HOIPs). First, I detail our use of momentum-resolved optical spectroscopy to demonstrate magnetic dipole (MD) light emission originating from self-trapped excitons [1,2]. I conclude by showing that 2D HOIPs are the only known materials to exhibit non-unity optical frequency magnetic permeabilities [3].
[1] DeCrescent, R.A., Venkatesan, N.R., Dahlman, C.J., Kennard, R.M., Zhang, X., Li, W., Du, X., Chabinyc, M.L., Zia, R. and Schuller, J.A., 2020. Bright magnetic dipole radiation from two-dimensional lead-halide perovskites. Science advances, 6(6), p.eaay4900.
[2] DeCrescent, R.A., Du, X., Kennard, R.M., Venkatesan, N.R., Dahlman, C.J., Chabinyc, M.L. and Schuller, J.A., 2020. Even-Parity Self-Trapped Excitons Lead to Magnetic Dipole Radiation in Two-Dimensional Lead Halide Perovskites. ACS nano, 14(7), pp.8958-8968.
[3] DeCrescent, R.A., Kennard, R.M., Chabinyc, M.L. and Schuller, J.A., 2021. Optical-Frequency Magnetic Polarizability in a Layered Semiconductor. Physical Review Letters, 127(17), p.173604.
Bio:
Jon A. Schuller graduated from UCSB with a B.S. degree in physics before completing a Ph.D. in Applied Physics at Stanford University. Jon joined the electrical and computer engineering department at UC Santa Barbara in 2012, and is currently a Full Professor. Jon’s research interests include reconfigurable photonics, semiconductor metasurfaces, and advanced spectroscopy of nanomaterials. He is the recipient of an AFOSR Young Investigator Award and NSF CAREER award.
Last Updated Date : 11/12/2022