Inconsistent black hole kick estimates from gravitational-wave models
.The accuracy of gravitational-wave models of compact binaries has traditionally been addressed by the mismatch between the model and numerical-relativity simulations. This is a measure of the overall agreement between the two waveforms. However, the largest modelling error typically appears in the strong-field merger regime and may affect subdominant signal harmonics more strongly. These inaccuracies are often not well characterised by the mismatch. We explore the use of a complementary, physically motivated tool to investigate the accuracy of gravitational-wave harmonics in waveform models: the remnant's recoil, or kick velocity. Asymmetric binary mergers produce remnants with significant recoil, encoded by subtle imprints in the gravitational-wave signal. The kick estimate is highly sensitive to the intrinsic inaccuracies of the modelled gravitational-wave harmonics during the strongly relativistic merger regime. We investigate the accuracy of the higher harmonics in four state-of-the-art waveform models of binary black holes. In this talk, I will present the results of our study and discuss how numerical-relativity kick estimates could be used to calibrate waveform models further.
Last Updated Date : 06/12/2022