Order from the disorder

Seminar
QUEST Center event
No
Speaker
Roy Beck, Tel Aviv University
Date
03/01/2022 - 14:00 - 12:30Add to Calendar 2022-01-03 12:30:00 2022-01-03 14:00:00 Order from the disorder ZOOM link:https://us02web.zoom.us/j/89236785442 Order from the disorder Roy Beck Tel Aviv University, Tel Aviv, Israel Roy@tauex.tau.ac.il The concept that a given amino-acid sequence will not form a 3D folded structure but still have biological functionality has developed only in the last ~15 years. The discovery rate and characterization of intrinsically disordered proteins have been increasing continually, becoming one of the fastest-growing areas of proteomics. It is now estimated that over 50% of eukaryotic proteins contain large intrinsically disordered regions involved in a wide range of cellular functions, including transcription, translation, signaling, and regulation of protein assembly. Structural flexibility and plasticity originating from the lack of an ordered structures suggest a significant functional advantage for these proteins, enabling them to interact with a broad range of binding partners. In this colloquium, I will review the recent trends where statistical mechanics ideas transform our understanding of molecular biology. I will also present new peptide amphiphiles composed of an intrinsically disordered peptide conjugated to variants of hydrophobic domains. These molecules, termed intrinsically disordered peptide amphiphiles, exhibit a sharp pH-induced micellar phase transition from low-dispersity spheres to extremely elongated worm-like micelles. I will present various experimental characterizations of the transition and propose a theoretical model to describe the pH response, routed on the weak interactions between disordered proteins. I will also show the potential of the shape transition to serve as a mechanism for the design of a cargo hold-and-release application. Such amphiphilic systems demonstrate the power of tailoring the interactions between disordered peptides for various stimuli-responsive biomedical applications.   Physics Building 203, Room 221 and https://us02web.zoom.us/j/89236785442 Department of Physics physics.dept@mail.biu.ac.il Asia/Jerusalem public
Place
Physics Building 203, Room 221 and https://us02web.zoom.us/j/89236785442
Abstract

ZOOM link:https://us02web.zoom.us/j/89236785442

Order from the disorder

Roy Beck
Tel Aviv University, Tel Aviv, Israel

Roy@tauex.tau.ac.il

The concept that a given amino-acid sequence will not form a 3D folded structure but still have biological functionality has developed only in the last ~15 years. The discovery rate and characterization of intrinsically disordered proteins have been increasing continually, becoming one of the fastest-growing areas of proteomics. It is now estimated that over 50% of eukaryotic proteins contain large intrinsically disordered regions involved in a wide range of cellular functions, including transcription, translation, signaling, and regulation of protein assembly. Structural flexibility and plasticity originating from the lack of an ordered structures suggest a significant functional advantage for these proteins, enabling them to interact with a broad range of binding partners.

In this colloquium, I will review the recent trends where statistical mechanics ideas transform our understanding of molecular biology. I will also present new peptide amphiphiles composed of an intrinsically disordered peptide conjugated to variants of hydrophobic domains. These molecules, termed intrinsically disordered peptide amphiphiles, exhibit a sharp pH-induced micellar phase transition from low-dispersity spheres to extremely elongated worm-like micelles. I will present various experimental characterizations of the transition and propose a theoretical model to describe the pH response, routed on the weak interactions between disordered proteins. I will also show the potential of the shape transition to serve as a mechanism for the design of a cargo hold-and-release application. Such amphiphilic systems demonstrate the power of tailoring the interactions between disordered peptides for various stimuli-responsive biomedical applications.

 

Last Updated Date : 29/12/2021