Transport and pumping from Majorana manipulations

QUEST Center event
No
Speaker
Dganit Median - BGU
Date
14/11/2019 - 14:30Add to Calendar 2019-11-14 14:30:00 2019-11-14 14:30:00 Transport and pumping from Majorana manipulations Majorana zero modes are non-Abelian quasiparticles that emerge on the edges of topological phases of superconductors. Evidence of their presence have been reported in transport measurements on engineered superconducting-based nanostructures. In this talk I will discuss transport signatures of dynamical Majorana manipulation. In the first part of the talk I will show that adiabatic exchange of a pair of Majorana zero modes leads to quantized heat pumping. This feature is inherent to the presence of Majorana zero modes and I will discuss its robustness against temperature, voltage bias and the detailed coupling to the contacts. Next I will discuss conductance measurements of a Floquet Majorana wire. For this purpose I will relate the scattering matrix of the time dependent system to a fictitious stroboscopic scattering matrix. Using this simplified scattering problem I will calculate the conductance in the 4 topologically distinct phases that occur in the Floquet Kitaev wire.   To book a meeting with Dganit click here Resnick conference room - Resnick building 2nd floor Department of Physics physics.dept@mail.biu.ac.il Asia/Jerusalem public
Place
Resnick conference room - Resnick building 2nd floor
Abstract

Majorana zero modes are non-Abelian quasiparticles that emerge on the edges of topological phases of superconductors. Evidence of their presence have been reported in transport measurements on engineered superconducting-based nanostructures. In this talk I will discuss transport signatures of dynamical Majorana manipulation. In the first part of the talk I will show that adiabatic exchange of a pair of Majorana zero modes leads to quantized heat pumping. This feature is inherent to the presence of Majorana zero modes and I will discuss its robustness against temperature, voltage bias and the detailed coupling to the contacts. Next I will discuss conductance measurements of a Floquet Majorana wire. For this purpose I will relate the scattering matrix of the time dependent system to a fictitious stroboscopic scattering matrix. Using this simplified scattering problem I will calculate the conductance in the 4 topologically distinct phases that occur in the Floquet Kitaev wire.

 

To book a meeting with Dganit click here

Last Updated Date : 16/11/2019