Dark matter revealed by the first stars?

Seminar
QUEST Center event
No
Speaker
Rennan Barkana, Tel Aviv University
Date
15/10/2018 - 15:00 - 13:30Add to Calendar 2018-10-15 13:30:00 2018-10-15 15:00:00 Dark matter revealed by the first stars?   The cosmic radio spectrum is expected to show a strong absorption signal around redshift 20 that corresponds to the rise of the first stars; specifically, the stellar radiation turns on 21-cm absorption by atomic hydrogen. The EDGES global 21-cm experiment has detected the first such signal, finding a stronger absorption than the maximum expected. This absorption can be explained by invoking excess cooling of the cosmic gas induced by an interaction with dark matter. This would have far reaching consequences, including an upper limit on the mass of dark matter particles that conflicts with the expectations for WIMPs. Specific particle physics models are highly constrained, but observations will decide. In particular, we predict that 21-cm fluctuations at cosmic dawn could be much larger than previously expected, exhibiting a specific signature of dark matter. Physics 301 Department of Physics physics.dept@mail.biu.ac.il Asia/Jerusalem public
Place
Physics 301
Abstract

  The cosmic radio spectrum is expected to show a strong absorption signal around redshift 20 that corresponds to the rise of the first stars; specifically, the stellar radiation turns on 21-cm absorption by atomic hydrogen. The EDGES global 21-cm experiment has detected the first such signal, finding a stronger absorption than the maximum expected. This absorption can be explained by invoking excess cooling of the cosmic gas induced by an interaction with dark matter. This would have far reaching consequences, including an upper limit on the mass of dark matter particles that conflicts with the expectations for WIMPs. Specific particle physics models are highly constrained, but observations will decide. In particular, we predict that 21-cm fluctuations at cosmic dawn could be much larger than previously expected, exhibiting a specific signature of dark matter.

Last Updated Date : 05/12/2022