Condensate, fluctuations and symmetries - a tale of 2D turbulence
Earths jet streams, Jupiters Great Red Spot and its zonal winds are all examples of persistent
large scale ows, whose dynamics is to a good approximation two-dimensional. These ows are
also highly turbulent, and the interaction between the turbulence and these coherent structures
remains poorly understood. Apart from its geophysical relevance, 2D turbulence is a rich and
beautiful fundamental system|where turbulence takes a counter-intuitive role. Indeed, in 2D,
energy is transferred to progressively larger scales, which can terminate in the self organization of
the turbulence into a large scale coherent structure, a so called condensate, on top of small scale
I will describe a recent theoretical framework in which the prole of this coherent mean
can be obtained, along with the mean momentum ux of the uctuations. I will explain how
and when the relation between the two can be deduced from dimensional analysis and symmetry
considerations, and how it can be derived. Finally, I will show that, to leading order, the velocity
two-point correlation function solves a scale invariant advection equation. The solution determines
the average energy of the uctuations, but does not contribute at this order to the momentum
due to parity + time reversal symmetry. Using analytic expressions for the solutions, matched to
data from extensive numerical simulations, it is then possible to determine the main characteristics
of the average energy. This is the rst-ever self-consistent theory of turbulence-ow interaction.
Last Updated Date : 24/04/2018