The effect of $SU(2)$ symmetry on many-body localization and thermalization

Seminar
QUEST Center event
No
Speaker
Dr. I. Protopopov, University of Geneva
Date
13/02/2017 - 14:00Add to Calendar 2017-02-13 14:00:00 2017-02-13 14:00:00 The effect of $SU(2)$ symmetry on many-body localization and thermalization The many-body localized (MBL) phase is characterized by a complete set of quasi-local integrals of motion and area-law entanglement of excited eigenstates. We study the effect of non-Abelian continuous symmetries on MBL, considering the case of $SU(2)$ symmetric disordered spin chains. The $SU(2)$ symmetry imposes strong constraints on the entanglement structure of the eigenstates, precluding conventional MBL. We construct a fixed-point Hamiltonian, which realizes a non-ergodic (but non-MBL) phase characterized by eigenstates having logarithmic scaling of entanglement with the system size, as well as an incomplete set of quasi-local integrals of motion. We study the response of such a phase to local symmetric perturbations, finding that even weak perturbations induce multi-spin resonances. We conclude that the non-ergodic phase is generally unstable and that $SU(2)$ symmetry implies thermalization. The approach introduced in this work can be used to study dynamics in disordered systems with non-Abelian symmetries, and provides a starting point for searching non-ergodic phases beyond conventional MBL.   Reznik Bldg (209), room 210 Department of Physics physics.dept@mail.biu.ac.il Asia/Jerusalem public
Place
Reznik Bldg (209), room 210
Abstract

The many-body localized (MBL) phase is characterized by a complete set of quasi-local integrals of motion and area-law entanglement of excited eigenstates. We study the effect of non-Abelian continuous symmetries on MBL, considering the case of $SU(2)$ symmetric disordered spin chains. The $SU(2)$ symmetry imposes strong constraints on the entanglement structure of the eigenstates, precluding conventional MBL. We construct a fixed-point Hamiltonian, which realizes a non-ergodic (but non-MBL) phase characterized by eigenstates having logarithmic scaling of entanglement with the system size, as well as an incomplete set of quasi-local integrals of motion. We study the response of such a phase to local symmetric perturbations, finding that even weak perturbations induce multi-spin resonances. We conclude that the non-ergodic phase is generally unstable and that $SU(2)$ symmetry implies thermalization. The approach introduced in this work can be used to study dynamics in disordered systems with non-Abelian symmetries, and provides a starting point for searching non-ergodic phases beyond conventional MBL.

 

Last Updated Date : 06/02/2017