Emerging Frontiers in Ultrafast Multidimensional NMR and MRI

Seminar
Speaker
Prof. Lucio Frydman, Department of Chemical Physics, Weizmann Institute
Date
19/05/2014 - 13:30Add to Calendar 2014-05-19 13:30:00 2014-05-19 13:30:00 Emerging Frontiers in Ultrafast Multidimensional NMR and MRI Magnetic resonance provides a prime tool for elucidating molecular structures in its spectroscopic (NMR) mode, and for the non-invasive mapping of objects in its imaging (MRI) mode. While entailing very different applications, the basic quantum foundations of both NMR and MRI are common. So are many of the techniques used in either molecular elucidations and/or images –and foremost among these the Nobel-winning proposition of multidimensional NMR/MRI. While these acquisitions take order-of-magnitude longer acquisition times than 1D traces, we have recently developed a scheme enabling the acquisition of arbitrary multidimensional NMR spectra and/or images (MRI) within a single scan.  This is by contrast to the hundreds or thousands of scans that are usually needed to collect this kind of data. Provided that the target molecule's signal is sufficiently strong, the acquisition time of NMR/MRI scans can thus be shortened by several orders of magnitude.  This new “ultrafast” methodology is compatible with existing multidimensional pulse sequences and can be implemented using conventional hardware. The manner by which the spatiotemporal encoding of the NMR interactions —which is the new physical principle underlying these new protocols— proceeds in these experiments, will be summarized. The new horizons that are opened by these protocols will also be exemplified with a variety of NMR and MRI projects we are currently involved in in fields of chemistry, biophysics, biology and medicine.  Room 301, Physics Bld. 202 Department of Physics physics.dept@mail.biu.ac.il Asia/Jerusalem public
Place
Room 301, Physics Bld. 202
Abstract

Magnetic resonance provides a prime tool for elucidating molecular structures in its spectroscopic (NMR) mode, and for the non-invasive mapping of objects in its imaging (MRI) mode. While entailing very different applications, the basic quantum foundations of both NMR and MRI are common. So are many of the techniques used in either molecular elucidations and/or images –and foremost among these the Nobel-winning proposition of multidimensional NMR/MRI. While these acquisitions take order-of-magnitude longer acquisition times than 1D traces, we have recently developed a scheme enabling the acquisition of arbitrary multidimensional NMR spectra and/or images (MRI) within a single scan.  This is by contrast to the hundreds or thousands of scans that are usually needed to collect this kind of data. Provided that the target molecule's signal is sufficiently strong, the acquisition time of NMR/MRI scans can thus be shortened by several orders of magnitude.  This new “ultrafast” methodology is compatible with existing multidimensional pulse sequences and can be implemented using conventional hardware. The manner by which the spatiotemporal encoding of the NMR interactions —which is the new physical principle underlying these new protocols— proceeds in these experiments, will be summarized. The new horizons that are opened by these protocols will also be exemplified with a variety of NMR and MRI projects we are currently involved in in fields of chemistry, biophysics, biology and medicine. 

Last Updated Date : 05/12/2022