2D Materials: Phenomena & Opportunities in Flatland
The rise of graphene has marked the beginning of a renaissance for the almost forgotten class of layered materials. Layered materials are composed of two dimensional sheets of r strongly intralaye bonded compounds stacked together by weak interlayer VdW forces.
Similarly to graphene, the two-dimensional building block of graphite, quantum confined layers of such materials possess fascinating physical properties. Among such properties are the (pseudo)spin-valley coupling of Dirac fermions at the zone edges and giant Stark effect. In this talk we will review some of these properties with an emphasis on transition-metal dichalcogenide semiconductors. Finally, we will discuss the potential of these materials within the roadmap for development of nano-electronic devices.
Last Updated Date : 23/12/2013