NV centers in diamond: toward solid-state quantum spin simulators

Seminar
Speaker
Dr. Nir Bar-Gil, Harvard University
Date
19/12/2012 - 15:00 - 14:00Add to Calendar 2012-12-19 14:00:00 2012-12-19 15:00:00 NV centers in diamond: toward solid-state quantum spin simulators Nitrogen-Vacancy (NV) color centers in diamond provide an atomic-like quantum system embedded in a solid-state structure. As such, they offer a bridge between the fields of atomic physics and condensed matter physics, with emerging applications ranging from quantum many-body spin dynamics to quantum information processing and magnetic field sensing. In this talk I will introduce the field of NV centers, and describe our research into understanding and controlling these systems, with the future goal of studying controllable many-body quantum spin systems. I will first present our realization of a coherent spectroscopic technique, in which the NV is used as a probe of the dynamics of its composite solid-state spin environment. Using this technique, we identify a possible new mechanism in diamond for suppression of electronic spin bath dynamics in the presence of a nuclear spin bath of sufficient concentration. I will then describe our work on applying dynamical decoupling approaches to extend the limit of the coherence time of the NV spin qubit, achieving record coherence times for solid-state electronic spins. I will further mention experiments in which In addition to controlling the NVs, we directly drive the surrounding bath spins and observe the transfer of polarization from the NVs to the bath, paving the way for spin bath cooling. I will conclude by discussing ways to engineer NV-based quantum spin simulators based on these results, and answer outstanding questions in many-body dynamics, topological phases and beyond.     Nano center, 9th floor seminar room Department of Physics physics.dept@mail.biu.ac.il Asia/Jerusalem public
Place
Nano center, 9th floor seminar room
Abstract
Nitrogen-Vacancy (NV) color centers in diamond provide an atomic-like quantum system embedded in a solid-state structure. As such, they offer a bridge between the fields of atomic physics and condensed matter physics, with emerging applications ranging from quantum many-body spin dynamics to quantum information processing and magnetic field sensing.
In this talk I will introduce the field of NV centers, and describe our research into understanding and controlling these systems, with the future goal of studying controllable many-body quantum spin systems. I will first present our realization of a coherent spectroscopic technique, in which the NV is used as a probe of the dynamics of its composite solid-state spin environment. Using this technique, we identify a possible new mechanism in diamond for suppression of electronic spin bath dynamics in the presence of a nuclear spin bath of sufficient concentration.
I will then describe our work on applying dynamical decoupling approaches to extend the limit of the coherence time of the NV spin qubit, achieving record coherence times for solid-state electronic spins. I will further mention experiments in which In addition to controlling the NVs, we directly drive the surrounding bath spins and observe the transfer of polarization from the NVs to the bath, paving the way for spin bath cooling.
I will conclude by discussing ways to engineer NV-based quantum spin simulators based on these results, and answer outstanding questions in many-body dynamics, topological phases and beyond.
 

 

Last Updated Date : 14/12/2012