

# Advanced Condensed Matter

## 86-823-01

### Transport Phenomena and Phase Transitions in Interacting Quantum liquids

**Lecturer:** Prof. Efrat Shimshoni

**Course type:** Lecture

**Date:** 2019-2020

**semester:** B

**weekly hours:** 4L

#### Details of subjects to be covered:

- 1) Linear Response Theory
  - 1.1 Review: classical theory for electric and thermal conduction in metals; screening and the Thomas-Fermi approximation
  - 1.2 Response to electromagnetic fields: a microscopic approach to quantum many-body systems
  - 1.3 The fluctuation-dissipation theorem and the Kubo formula; interpretation of experimental probes: dielectric function, conductivity, dynamical structure factor and noise
  - 1.4 Causality and conservation laws as encoded in response functions
- 2) Interacting Particles and Collective Phenomena
  - 2.1 Interacting electrons in metals; the plasmon mode; strangeness of 1d: Tomonaga-Luttinger liquid, spin-charge separation and Wigner crystallization
  - 2.2 Interacting Boson systems: symmetry breaking and superfluidity/superconductivity; the Meisner effect and the Anderson-Higgs mechanism
  - 2.3 Superfluidity in 2d: topological order and the Kosterlitz-Thouless transition
  - 2.4 Charge-flux duality and the superconductor-insulator transition
  - 2.5 Phase-slips in superconducting wires
- 3) Quantum Hall Liquids
  - 3.1 The integer quantum Hall effect: 2d electron gas in a strong magnetic field
  - 3.2 The fractional quantum Hall liquid: flux attachment and statistics transmutations
  - 3.3 Quantum Hall edge states
  - 3.4 Quantum Hall effect in graphene and topological insulators

**Pre-requisite:**

Advanced Quantum Mechanics, Advanced Statistical Mechanics

**Course mandatories and Grading:**

Homework assignments 100%

**Recommended Bibliography:**

Linear Response Theory:

- 1) P. Nozieres and D. Pines, *Theory of Quantum Liquids, Vol. 1&2* (Advanced Book Classics, Addison-Wesley, 1966).

Interacting Particles and Collective Phenomena:

- 1) A. Altland and B. Simons, *Condensed Matter Field Theory* (Cambridge University Press, 2006).
- 2) N. Nagaosa, *Quantum Field Theory in Condensed Matter Physics* (Springer-Verlag, 1999).
- 3) T. Giamarchi, *Quantum Physics in One-Dimension* (Oxford University Press, 2004).

Quantum Hall Liquids:

- 1) R. E. Prange, S. M. Girvin and K. von Klitzing, *The Quantum Hall Effect*, (Springer-Verlag).
- 2) S. Das Sarma and A. Pinczuk, *Perspectives in Quantum Hall Effects* (John Wiley & Sons, 1997).