

01.07.2019

Advanced Statistical Mechanics

86-821-01

Lecturer: Prof. Ido Kanter

Course type: Lecture + practice

Date: 2019-2020

semester: B

weekly hours: 2L+2P

Aim of the course:

This course is one of the compulsory graduate courses. It is a natural extension of the compulsory courses of the first degree such as statistical physics and quantum mechanics.

Details of subjects to be covered:

Principles of statistical mechanics

Statistical ensembles

Liouville theorem

Ensembles in equilibrium

Ergodicity and mixing flow

Quantum ensembles and statistics

Phase transition and critical phenomena

Exact solution in one and two dimensions

Landau theory

Mean-field theory and exact solutions

Scaling theory

Course Requirements:

Exercises + Exam.

Prerequisites:

Basic knowledge of programming.

Grading:

The final score: Examination 90%, exercises 10%

Bibliography:

Recommended textbooks:

- Statistical Mechanics, K. Huang (John Wiley, NY)
- A modern course in statistical physics, L. E. Reichl (Univ. of Texas press)
- Statistical Physics, Lifshitz and Pitaevskii
- Phase transition and critical phenomena, S. Ma
- Introduction to phase transition and critical phenomena, H. E. Stanely