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A fermionic disordered one-dimensional wire in the presence of attractive interactions is known to have
two distinct phases, a localized and superconducting, depending on the strength of interaction and disorder.
The localized region may also exhibit a metallic behavior if the system size is shorter than the localization
length. Here we show that the superconducting phase has a distribution of the entanglement entropy distinct
from the metallic regime. The entanglement entropy distribution is strongly asymmetric with a Lévy
α-stable distribution (compared to the Gaussian metallic distribution), as is seen also for the second Rényi
entropy distribution. Thus, entanglement properties may reveal properties which cannot be detected by
other methods.
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In the last decade the application of concepts from
quantum information, such as entanglement entropy (EE)
[1], took center stage in understanding physical phenomena
in condensed matter physics. One of the reasons for this
interest is that EE is deeply connected to quantum phase
transitions. The EE quantifies the entanglement in a many-
body system by dividing it into two regions A and B. For a
system in a pure state jΨi, the entanglement between
regions A and B is measured by the EE SAorB, related to the
eigenvalues of the reduced density matrix of area A (ρA) or
B (ρB). It is expected that nonlocal properties, such as the
EE, may provide a different perspective beyond the tradi-
tional point-point correlations and local order parameters
[2–11]. This is also very useful for numerical methods,
such as the density matrix renormalization group (DMRG),
which are ill suited for the calculation of a pair of operators
in spatially distant locations as required for long-range
correlations.
Specifically, ρA is defined as ρA ¼ TrBjΨihΨj, where the

degrees of freedom of region B are traced out. The
eigenvalues of the matrix λAi are used to calculate the EE,

SA ¼ −
X
i

λAi ln λ
A
i ; ð1Þ

and the Rényi entropy,

SnA ¼ −
1

1 − n
ln
X
i

ðλAi Þn; ð2Þ

where the first Rényi entropy (n → 1) is equal to the EE
S1A ¼ SA. Thus the EE is the von Neumann (Shannon)
entropy of λAi , and the knowledge of the Rényi entropies for
different n’s probes the full spectrum of fλAi g. For one-
dimensional (1D) systems, the area of the boundary
between regions A and B is fixed and thus the EE should

not depend on the size of region A. Nevertheless, a
logarithmic dependence of the form [12–15]:

SðLA; LÞ ¼
1

6
ln

�
sin

�
πLA

L

��
þ c; ð3Þ

where LA is the length of region A and L is the sample’s
length, is expected in the metallic (clean) regime.
In this Letter we will use the EE and the second Rényi

entropy (SRE) in order to investigate the nature of different
phases of fermionic disordered 1D systems with attractive
interactions. Electron-electron interactions in 1D systems
are parametrized by the Luttinger parameter K [16,17]. For
noninteracting systems K ¼ 1, while for attractive inter-
actions K > 1. When both disorder and interaction are
present, an extended metallic (with superconducting cor-
relations) phase is expected once attractive interactions are
strong enough, i.e., K > 1.5 [17–20]. This stems from the
renormalization group scaling of the localization length

ξ ¼ ðξ0Þ1=ð3−2KÞ; ð4Þ

where ξ0 is the noninteracting localization length. Thus, for
K ¼ 1.5 the localization length diverges, and one transits
from the localized to the extended regime. Indeed, it has
been numerically demonstrated that with strong enough
attractive interactions in the usual Anderson model [21–24]
metal-like behavior emerges, although no evidence of
superconducting correlation has been numerically
demonstrated.
For disordered systems one must consider the EE

behavior over an ensemble of different realizations of
disorder. It has been demonstrated [25] that the median
EE for LA < ξ follows the metallic logarithmic behavior
[Eq. (3)], while for LA > ξ it saturates. In principle, this
could be used to decide in what phase (localized or
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metallic) the system is in [24]. Nevertheless, in a realistic
numerical study this strategy is fraught with problems,
since the localization length grows rapidly as a function of
K [Eq. (4)], and easily outgrows any finite system length L.
Once ξ ≫ L a finite system will show metallic behavior
although it is in the localized regime. For brevity, we shall
refer to the K > 1.5 regime as superconducting, and to the
finite sample K < 1.5 regime as localized or metallic
according to whether L > ξ or ξ > L.
In this Letter we will show that the full distribution of the

EE shows different behaviors in the metallic and super-
conducting regimes, although the median EE is essentially
identical in both regimes. The EE distribution changes from
a Gaussian in the metallic regime to a very asymmetric
Lévy α-stable distribution (LASD) with “fat tails” in the
superconducting regime. This behavior gives us a conven-
ient numerical way to identify the phase of a system.
Moreover, since an asymmetric LASD is also seen for the
SRE distribution, it could also be measured experimentally.
Thus, the EE and the SRE distributions are able to
characterize the phase of the system, where other methods
fail.
In this Letter we consider a 1D wire of length L

populated by spinless electrons with attractive nearest-
neighbor interactions and on-site disordered potential. The
system’s Hamiltonian is given by

H ¼
XL
j¼1

ϵjĉ
†
j ĉj − t

XL−1
j¼1

ðĉ†j ĉjþ1 þ H:c:Þ

þ U
XL−1
j¼1

�
ĉ†j ĉj −

1

2

��
ĉ†jþ1ĉjþ1 −

1

2

�
; ð5Þ

where ϵj is the on-site energy, which is drawn from a
uniform distribution ½−W=2;W=2�, ĉ†j is the creation
operator for a spinless electron at site j, and t ¼ 1 is the
hopping matrix element. The interaction strength is U < 0,
and a background is included. For the noninteracting
Anderson model the system is localized with a localization
length ξ0 ≈ 105=W2 [26]. Here the Luttinger parameter
KðUÞ ¼ π=½2 cos−1ð−U=2Þ� [27,28]. For noninteracting
electrons KðU¼ 0Þ ¼ 1. For attractive interactions K > 1
and ξ increases as U becomes more negative. For U ¼ −1,
K ¼ 1.5 and the localization length according to Eq. (4)
diverges. Thus, below U < −1 the system is expected to be
delocalized. At U ¼ −2 it goes through another phase
transition to a phase separated state and is insulating again.
Indeed, numerically [21–24], this system is known to
exhibit extended behavior for a range of attractive inter-
action strength centered around U ¼ −1.5 and not too
strong disorder W < 1.5.
The DMRG [29,30] is a very accurate numerical method

for calculating the ground state of the disordered interacting
1D system and for the calculation of the reduced density
matrix. We calculate the EE for three lengths L ¼ 300, 700,

1100 and different values of LA ¼ 10; 20;…; L − 10,
for 400, 200, 100 realizations of disorder for the corre-
sponding system length. Specifically, we calculate the
normalized EE of the jth realization at a given LA,
sjðLAÞ ¼ SjðLAÞ=hSðLAÞi, where hSðLAÞi is the average
EE over the different realizations. Since the distribution of
the EE is very similar for different values of LA as long as
LA is not too close to the edge we accumulate the
distribution of the normalized EE, PðsÞ, in the range
of L=4 < LA < 3L=4.
Let us begin by discussing the EE distribution for U ¼

−0.7 [KðU ¼ −0.7Þ ¼ 1.3] for which the system is in the
metallic regime, i.e., for localization lengths much larger
than sample length. In Fig. 1 we present the distribution for
two values of disorder (W ¼ 0.3;W ¼ 0.7), corresponding
to the noninteracting localization length ξ0ðW ¼ 0.3Þ ∼
1200 and ξ0ðW¼0.7Þ∼200, thus ξðW ¼ 0.3; U ¼ −0.7Þ∼
5 × 107, and ξðW ¼ 0.7; U ¼ −0.7Þ ∼ 6 × 105. First, we
examine the median value of the EE as function of LA (here
we could use the average which is almost equal to the
median, but for the sake of uniformity with the upcoming
results we use here the median) and compare it with the
expression of the EE for a clean system described in
Eq. (3). As can be seen in the inset of Fig. 1 it fits quite
well. Thus, the median EE follows closely the expected
behavior of a clean (metallic) system. The distribution
PðsÞ for all three length and two disorder strength is
plotted in Fig. 1. As has been discussed in Ref. [31], for
L ≪ ξ, we expect the distribution to be Gaussian, i.e.,
ð ffiffiffiffiffiffi

2π
p

σÞ−1 exp½−ðs − μÞ2=2σ2], centered at the average μ.
This is indeed seen in Fig. 1 (up to a slight skewness of the
tails), as well as the fact that the width, σ of the Gaussian is
almost independent of L. On the other hand, it is clear that
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FIG. 1 (color online). The distribution PðsÞ of the normalized
EE (see text) for different length L ¼ 300 (black, circles), L ¼
700 (red, squares), L ¼ 1100 (green, diamonds), and disorder
strength W ¼ 0.3 (open symbols), W ¼ 0.7 (closed symbols). A
fit to a Gaussian with a width which depends on the disorder
σðWÞ is depicted by the continuous lines. (Inset) The median EE
as function of LA. The symbols correspond to the numerical
results, the curves to Eq. (3).
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the disorder strength W does affect σ. As expected, the
weaker the disorder, the narrower is the width of the
Gaussian.
The dependence of the Gaussian width onW is examined

in Fig. 2. We keep the length and interaction strength fixed
(L ¼ 300, U ¼ −0.7) while varying W. Even for the
strongest disorder ξðW ¼ 0.9; U ¼ −0.7Þ ∼ 2 × 105, is
much larger than the sample length. PðsÞ remains
Gaussian for all disorder strength. Moreover, as can be
seen from the inset σðWÞ ∝ W2.
What happens to the EE distribution in the supercon-

ducting regime? Specifically, we concentrate on the
extended regime with U ¼ −1.5 (KðU ¼ −1.5Þ ¼ 2.3),
different values of disorder W ¼ 0.3, 0.5, 0.7, 0.9 corre-
sponding to a non-interacting mean free path ξ0 ∼ 1200,
400, 200, 130 and different sample lengths L ¼ 300, 700,
1100. This regime of the parameter space is deep in the
superconducting regime. We present the distribution PðsÞ
for all lengths and interaction strengths in Fig. 3. It is
obvious that PðsÞ is completely different than in the
metallic regime (Figs. 1 and 2). In all cases the distribution
is strongly asymmetric. The median value of the EE is close
to its maximum value, and the probability of measuring an
EE larger than the median is rather small and falls off
abruptly. On the other hand, there is a high probability for
measuring values of the EE much below the median value.
For smaller values of the EE the distribution has a very long
tail. Another difference is the strong dependence on the
sample length L even at the same value of disorder W.
First, one concludes that similarly to the case of a

localized system (L > ξ) [25,31,32], the average EE is
not a correct description of the superconducting regime
typical EE. The EE is more appropriately represented by
the median. In the inset of Fig. 3 the median of the

EE as function of LA is compared to Eq. (3), and fits
quite well.
As can be seen in Fig. 4, the distribution is universal

and may be scaled by the function ~PðuÞ, here
u ¼ 1þ ðs − 1ÞPmax, and the distribution is normalized
~PðuÞ ¼ PðuÞ=Pmax, where Pmax is the value of PðsÞ at the
maximum. In the inset of Fig. 4, the values of Pmax vs ξ0=L
is depicted. Up to the ballistic regime, i.e., for ξ0 ≫ L, a
linear relation seems to hold. The distribution ~PðuÞ may be
described rather well by a LASD, which is a natural
extension of the central limit theorem for the case where
the identically distributed random variables have no finite
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FIG. 2 (color online). The distribution PðsÞ of the normalized
EE for a fixed wire length (L ¼ 300) and different disorder
strength: W ¼ 0.3 (black circles), W ¼ 0.5 (red squares), W ¼
0.7 (green diamonds), W ¼ 0.9 (blue triangles). A fit to a
Gaussian of width σðWÞ (depicted in the inset) is indicated by
the continuous lines. (Inset) The Gaussian width σ as a function
of the disordered strength square W2.
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FIG. 3 (color online). The distribution PðsÞ of the normalized
EE deep in the superconducting regime (U ¼ −1.5) for different
strength of disorder (W ¼ 0.3, black; W ¼ 0.5, red; W ¼ 0.7,
green; W ¼ 0.9, blue symbols) and sample length L ¼ 300
(circles), L ¼ 700 (squares), L ¼ 1100 (diamonds). (Inset) The
median EE as a function of LA. The symbols correspond to the
numerical results, the curves to Eq. (3).
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FIG. 4 (color online). The data presented in Fig. 3 scaled by the
parameter u (see text). The continuous (dashed) black curve is the
LASD with α ¼ 1, β ¼ −1, γ ¼ 0.285, δ ¼ 0.8, (α ¼ 1.2,
β ¼ −1, γ ¼ 0.28, δ ¼ 0.52). (Inset) The maximum of the
distribution PðsÞ (Pmax) depicted in Fig. 3 as a function of
ξ0=L. A linear behavior in the regime ξ0=L < 2 is indicated by
the line.
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variance, and is used to describe distributions with fat tails.
The LASD [33–35]

fðx;α;β;γ;δÞ¼ 1

π
Re

Z
∞

0

eitðx−μÞe−ðγtÞαð1−iβΦÞdt; ð6Þ

[where Φ ¼ tanðπα=2Þ, except for α ¼ 1 where
Φ ¼ −ð2=πÞ logðtÞ], is defined by four parameters. The
stability index 0 ≤ α < 2 characterizes the asymptotic
behavior of the tails jxj−1−α (except for α ¼ 2), the skew-
ness parameter −1 ≤ β ≤ 1, γ is a scale factor and δ
controls the location of the maximum [33]. In general f
is not known analytically, except for special cases, such as
fðx; α ¼ 2; β; γ ¼ σ=

ffiffiffi
2

p
; δ ¼ x̄Þ, equal to a Gaussian of

width σ. We plot fðu; α ¼ 1; β ¼ −1; γ ¼ 0.285; δ ¼ 0.8Þ,
and fðu; α ¼ 1.2; β ¼ −1; γ ¼ 0.28; δ ¼ 0.52Þ in Fig. 4.
The skewness is clearly maximal (β ¼ −1), while fitting α
depends very much on the tail region, which has the largest
numerical uncertainty. Nevertheless, the main part of the
distribution is evidently fitted well by 1 < α < 1.2.
Thus, although the median of the EE (or its average) does

not give us a clear signature whether the system is in the
metallic regime or in the superconducting one, the dis-
tribution can differentiate between the regimes. Further
work is needed in order to follow how the distribution
changes as one goes through the phase transition and
whether the transition point is characterized by a special
distribution. A hint may be found in Ref. [24], where the
variance of the EE is plotted through the transition. It seems
that the variance becomes smaller in the metallic side as one
approaches the transition and then grows again in the
superconducting regime. This is in line with a crossover
from a Gaussian distribution to a fat tail one.
One of the earliest suggestions for an experimental

measure of the EE is the current noise [2,36]. This is
based on a connection between the fluctuations in the
number of particles measured in region A (i.e., the full
counting statistics) and the EE. Nevertheless, it has been
shown to fail for interacting systems [37]. In Fig. 3(a) we
probe the distribution of the fluctuations in the number of
particles in region A, δNA ¼ NA − hNAi. It is clear that the
distribution of δNA is wider in the superconducting phase.
This is in line with the correspondence between δNA and
EE. On the other hand, the distribution of δNA remains
Gaussian, with no signature of significant fat tails. Thus,
the current noise does not carry any distinct signatures of
the EE distribution.
A more direct way to measure the entanglement is

through the measurement of the SRE [Eq. (2), n ¼ 2],
which measures the overlap between the ground state of
two identical copies of a system when region A is swapped
between them [38,39]. There are suggestions for exper-
imentally measuring the SRE through coupling between
two identical copies of cold atoms in optical lattices
[40–42]. Thus, a direct evaluation of the distribution of

S2A is of interest. As can be seen in Fig. 5(b), the
distribution of Pðs2Þ (calculated in the same way as for
the EE), shows similar differences between metallic and
superconducting behavior, i.e., Gaussian vs LASD
behavior.
What stands behind the EE distribution in the super-

conducting phase? The phase and number operator are
canonically conjugate, and since in the superconducting
regime the phase is constant, the number fluctuations
should grow compared to the metallic one, as can be
seen by direct calculation [Fig. 5(a)]. Nevertheless, EE
reveals information beyond the number fluctuations. The
fat tail distribution may be explained by the following
picture: One might think of the disordered superconducting
state as regions of superconducting phase of random
sizes, connected by weak links. This picture leads to a
broad distribution of the EE due to the broad distribution of
numbers and strength of links. In a sense, this is a
mirror (dual) picture of the strongly localized regime,
where a wide distribution of many physical quantities
is seen.
To conclude, the EE and SRE distributions show a

distinct behavior, depending if the system is in a metallic
(system length much smaller than the localization length)
or a superconducting (localization length diverges) regime.
While the metallic regime shows a Gaussian distribution of
the EE and SRE, the superconducting EE and SRE shows
an asymmetric distribution. Thus, the entanglement proper-
ties encode details of the underlying phase of the system
which may elude other measures, useful for detecting new
phases both numerically and experimentally. The
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FIG. 5 (color online). (a) The distribution of δNA, for the
metallic (U ¼ −0.7, black circles) and superconducting
(U ¼ −1.5, red squares) regimes for L ¼ 700 and W ¼ 0.3.
The black (red) line corresponds to a fit to a Gaussian distribution
with σ ¼ 0.78 (σ ¼ 1.32). (b) The distribution of the SRE, Pðs2Þ,
for the two phases. In the metallic regime the distribution fits a
Gaussian with width σ ¼ 2.5 × 10−2 (black line). For the super-
conducting regime a fit to the LASD with α ¼ 1.3; β ¼ −1;
γ ¼ 6 × 10−4; δ ¼ 1 (red line).
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emergence of a fat tail distribution for the EE and SRE in
the superconducting regime is fascinating and deserves
further study.
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