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We investigate the semiclassical phase-space probability distribution P(x, p) of cold atoms in a Sisyphus
cooling lattice with an additional harmonic confinement. We pose the question of whether this
nonequilibrium steady state satisfies the equivalence of energy and probability. This equivalence is the
foundation of Boltzmann-Gibbs and generalized thermostatic statistics, and a prerequisite for the
description in terms of a temperature. At large energies, P(x, p) depends only on the Hamiltonian
H(x, p) and the answer to the question is yes. In distinction to the Boltzmann-Gibbs state, the large-energy
tails are power laws P(x, p) « H(x, p)~'/P, where D is related to the depth of the optical lattice. At
intermediate energies, however, P(x, p) cannot be expressed as a function of the Hamiltonian and the
equivalence between energy and probability breaks down. As a consequence the average potential and
kinetic energy differ and no well-defined temperature can be assigned. The Boltzmann-Gibbs state is
regained only in the limit of deep optical lattices. For strong confinement relative to the damping, we derive
an explicit expression for the stationary phase-space distribution.
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The search for generalized forms of Boltzmann-Gibbs
(BG) statistics, especially those related to fractal and
power-law concepts, has attracted considerable interest
[1-4]. Among this class of systems, laser cooled atoms
in optical lattices are especially appealing. Here, the light
field replaces the classical heat bath of temperature 7" and
we are generally not in thermal equilibrium, raising the
question of what replaces the canonical BG distribution
and how the statistical description changes. The excellent
tunability of optical lattices allows us to perform state
engineering. In the case of driven dissipative systems the
dissipation can be tuned to guide the system towards a
desired nonequilibrium steady state [5—7]. The dissipation
mechanism in conjunction with excitation of the atoms by
the light field also governs the statistics of subrecoil laser
cooling and Sisyphus cooling, both recognized to yield
power-law statistics and deviations from the standard
equilibrium framework [3,8—14]. Since these cooling
techniques are used in laboratories all over the world,
the generalization of standard statistical mechanics
becomes a very practical problem. In Sisyphus cooling,
the nonlinear momentum dependence of the cooling
mechanism, discussed in more detail below, induces a
wealth of unusual and interesting statistical effects; for a
recent review see Ref. [4]. In particular, the velocity
distribution of the cold atoms was predicted and later
shown experimentally to follow Tsallis statistics [12,15],
contrary to the Gaussian BG statistics found in linearly
damped systems. The insight that power-law statistics
describe a broad range of systems in physics [16—18]
warrants a second, closer look at cold atoms as an
experimental toolbox to explore the novel steady-state
statistics of these nonequilibrium systems.
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In this Letter, we investigate a semiclassical model of
atoms in an optical lattice with an additional confining field
and discuss the resulting nonequilibrium stationary phase-
space probability distribution function (PSPDF). In par-
ticular, we focus on the question of how this PSPDF differs
from BG or Tsallis statistics. Both BG and Tsallis statistics
are based on the approach of thermostatics [1,19], i.e., the
minimization of an entropy functional under the constraint
of constant mean energy. A natural consequence of this
approach is energy equipartition [19]; states with the same
energy occur with the same probability and the PSPDF is a
function of the system’s Hamiltonian. Without a confining
potential, the atomic cloud spreads diffusively or even
superdiffusively [10,11,14,20-22], and thus there is no
stationary PSPDF. For the momentum distribution, the
equivalence between energy and probability is realized
trivially, as the momentum is the only degree of freedom
entering the Hamiltonian H = p?/(2m). The stationary
momentum distribution when written as a function of the
Hamiltonian turns out to be of the Tsallis form [12,15].
By adding a confining potential, the position of the atoms
enters the Hamiltonian as a second degree of freedom.
Only then the connection between the PSPDF and the
Hamiltonian can potentially be nontrivial. The main ques-
tions we wish to answer in the following are as follows.
Under what conditions is the PSPDF solely a function of
the Hamiltonian? If this is the case, then are the statistics
described by BG or Tsallis statistics? And if not, how does
the PSPDF deviate from the latter and what are the
consequences? The answers to these questions reveal rich
physical phenomena and depend on the parameters of the
lattice and the confining field, as well as the energy scale.
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Model.—Within the semiclassical description, the
atoms are subject to a nonlinear, momentum-dependent
friction force, which encapsulates the cooling mechanism
[9]. In addition, there are random recoil events due to
the spontaneous emission of photons, modeled as Gaussian
white noise (n(t)n(¢)) = 2D,6(t — t'). The atoms’
dynamics is described by the Langevin equation [9,10]
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————

confinement noise
friction force

where y is the damping coefficient, p, is the capture
momentum, and D, is the momentum diffusion coefficient
[23], which can be expressed in terms of the optical
lattice parameters. We restrict our discussion to the one-
dimensional case, which has been realized in several
experiments [10,11,14,24]. In addition, the particles are
subject to an external confining potential, which we take
to be harmonic, U(x) = mw’x?/2. Higher-dimensional
Sisyphus cooling can lead to spatial inhomogeneity [25]
and we want to avoid this complication here. At small
momenta |p| < p., the friction force is Stokes-like,
F¢(p) x —p, ie., linear in the momentum. For entirely
linear friction, we would obtain precisely the BG distri-
bution with kzT = D, /(ym) for the stationary state of the
system. However, at large momenta |p| > p. the magni-
tude of the friction force decreases as F(p) « —1/p with
momentum—the cooling mechanism fails for very fast
atoms. This nonlinearity of the friction force induces
|
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temporal correlations in the motion of the atoms [10],
as fast atoms experience only a weak friction force and
thus tend to stay fast. These correlations in the absence
of a confining potential are responsible for the power-law
statistics and anomalous dynamics [22,26]. The stationary
PSPDF of the ensemble of random motions described
by Eq. (1) is given by the Klein-Kramers equation [27].
For convenience of notation, we switch to dimensionless
variables mwx/p. = x, p/p. = p

Qxd, — pd,] + 0, [1:}2 + D@I,] ] P(x,p)=0. (2)

We here defined the dimensionless parameters Q = /7y,
quantifying the strength of the confining potential, and
D = D, /(yp?), related to the depth of the optical lattice U,
by D = cE,/U, with the photon recoil energy E, and a
constant ¢ ~ O(10) that depends on the details of the
experimental system [10,13]. Note that in the following,
we always consider the case D < 1, since only here a
stationary state exists; the case D > 1 will be discussed
elsewhere [28].

Strong confinement Q > 1.—We expect the system to
be accurately described by its energy whenever its evolution
is approximately Hamiltonian, i.e., when dissipation and
noise can be treated as small perturbations. More precisely,
this underdamped limit [29-31] is defined by the condition
that the change in energy over one period of the Hamiltonian
evolution is small compared to the total energy. We can
formalize this by introducing the energy E = (p* + x?)/2
and the phase-space angle a = arctan(p/x) in terms of
which Eq. (2) reads

Li = O 1 +2Esin?(a) ' © 1+ 2Esin*(a)
+ D20, sin(a) cos(a)dg + %E)acosz(a)aa + [sin?(@) — cos?(a)]0g + 2sin®(@)OgEdg | . (3)

Here, the operator L contains the terms due to friction and
noise, while the operator J, describes the Hamiltonian
dynamics. Obviously, the underdamped approximation
holds for Q> 1, where we have to leading order
0,P(E,a) =0 and thus

P(E,a) = Pg(E)/(27) + O(Q7"). (4)

Plugging this into Eq. (3) and integrating over a, we find an
equation for the stationary energy probability distribution
function (PDF)

{aE (1 - \/TIJZE> + DaEEaE} PL(E)=0. (5)

The normalized solution to this stationary energy-diffusion
equation reads, for D < 1,

putey - 220 D2=D

(I+VI+2E)P. (6)

Changing back to position and momentum, we obtain to
leading order a PSPDF P(x, p) = Pg(H(x, p))/(2x) that
depends only on the Hamiltonian. Contrary to the BG
density, however, the distribution is not exponential in the
Hamiltonian, and does not factorize into a potential and
kinetic part. The energy PDF (6) is compared to the results
from numerical simulations in Fig. 1 and shows excellent
agreement with the latter already for moderate values of the
frequency. Asymptotically for large energies, the energy
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FIG. 1 (color online). Energy PDFs for D =1/3 and

D =3/20. Symbols are data from numerical simulations of
Eq. (1); colored lines are analytical results. For the larger value of
D = 1/3 (red, squares), the underdamped approximation (6) is
accurate even for moderate frequencies Q = 2.0 (full squares).
For small frequencies Q = 0.1 (empty squares), the energy PDF
differs in the center; the tails, however, still follow the same
power-law behavior Pz(E) « E~'/P. For smaller values of D
(blue, triangles), the PDF has more weight in the center and
is there described by the small-D expansion (12) (full line),
which considerably improves upon the naive BG distribution
(dashed line). The large energy power law (dash-dotted line) is
approached very slowly.

PDF (6) behaves as a power law Pp(E) «x E-'/P. The
momentum PDF decays as P,(p) o p=>/P*1 for large
momenta, which is markedly different from the exponent
P,(p) o p~'/P obtained without the confinement [9]. The
power-law form of the energy PDF immediately implies
that the average energy

D(2 - D)
(2—3D)(1 -2D)

(E) = (7)
diverges in the stationary state for D > 1/2, where it
increases as a function of time and a time-dependent
description is needed to obtain the average energy. Im-
portantly, the average kinetic energy (E;) = (E)/2 is
always smaller than the result of Ref. [9] found for the
unconfined system. This implies that the confinement
increases the effectiveness of the friction mechanism: fast
particles, for which the friction force tends to zero [see
Eq. (1)], eventually decelerate due to the harmonic restor-
ing force and reenter the momentum range where the
friction is sizable, thus increasing overall dissipation.
The energy PDF (6) is the leading order of an expansion
in terms of Q! [32]. More precisely, we have

_PuB) [, hiE)

P(E
(E,a) == Q

+0@Q7?)].  (8)

which allows us to find corrections for finite frequencies.
These correction terms, derived in the Supplemental
Material [33], depend on the angle o and thus violate
energy equipartition. The PSPDF corresponding to this
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FIG. 2 (color online). PSPDF for D =1/3 and Q=2 as a
function of energy E and angle a. The colored areas are the result
of numerical Langevin simulations; the bold contours are the
analytical results from the underdamped approximation (8) up to
order Q~!. While for small energies the equiprobability lines are
approximately straight lines, for intermediate energies the angle
dependence is clearly visible.

first-order result is shown in Fig. 2. Except at low energies,
this exhibits clear deviations from equiprobable energy
surfaces, which would appear as straight lines, and shows
excellent agreement between our theory and simulation
results. Equation (6) tends to the BG distribution in the
limit D — 0, which is reminiscent of the Tsallis ¢
exponential [1] found for the free case [12,15]. However,
even though the PSPDF is a function of the Hamiltonian in
the limit of large €, it is clearly not a ¢ exponential, which
implies that Tsallis statistics do not provide the general
solution for this system.

Large energies E > 1.—Importantly, the asymptotic
behavior Pg(E) « E~'/P (6) is not only valid for large
Q, but is the generic case for large energies. Physically,
this is due to the nonlinear behavior of the friction force,
which tends to zero for large momenta and thus leads to
underdamped behavior at large energies. The large energy
tails of the PSPDF are thus universally described by the
underdamped approximation and are a function of the
Hamiltonian only. This can be understood by noting that,
except in a small “strip” around @ =0 and £z, where
Esin?() is small, the operator £ in Eq. (3) is of order
E~'. Similar to Eq. (8), we can expand the PSPDF

Pg(E)
2

P(E,a) = [14—91](3&)4—0@‘2) )

Expanding L for large energies, we can determine the
function g, (a) (see the Supplemental Material [33]). The
resulting asymptotic PSPDF up to order E~! reads

P(E,a) = NE-(/P) {1 - %EE‘VZ + %E‘l
+ L 1+ 1 sin(2a) — cot(2a) | [E~!
2Q D ’

(10)
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where N is a normalization constant. The first three terms on
the right-hand side stem from the large energy expansion of
Py (E), whereas the remaining term is the angle-dependent
correction g, (). Equation (10) diverges at « = 0 and +=.
These singularities occur because in Eq. (10) we expanded
for large E, assuming that 2E sin(«) is large, which breaks
down in the strip. Inside the strip, we express Eq. (3) as a
function of z = /2Ea and E and again expand for large
energies. Careful asymptotic matching of both expansions
and the condition that P(E, @) is a periodic function of &
fixes any occurring integration constants. We will detail this
procedure in a longer publication [28]; the result up to order
E~!is given in Eq. (S12) in the Supplemental Material [33].
The main conclusion from Eq. (9) is that, for large energies,
the PSPDF decays as a power law in energy, with small
angle-dependent corrections.

Deep lattices D < 1.—For small D, the atoms are
typically slow and thus the friction is approximately linear.
While the large energy tails are still given by Eq. (9), the
power law decays very fast for small D and the center part
dominates the statistics. In this regime, we thus expect the
BG equilibrium distribution to approximate the PSPDF.
Indeed, by rescaling X = x/+/D and p = p/+/D in Eq. (2),
we see that in the limit D — 0, we recover the usual Stokes
friction result and thus the BG distribution Pgg(X, p) o
e~(PP+3)/2 We define an auxiliary function h(¥, p) via
P(X, p) = Pgg(X, p)h(X,p) and expand the latter with
respect to D

h(x,p) =1+ Dh\(x, p) + D*hy(x, p) + O(D?).  (11)

Plugging this into Eq. (2) and equating coefficients, we find
a recursive set of equations for %, (X, p) that are polynomials
of up to order 4n in x and p. This reduces the problem to
solving linear equations for the coefficients. In order for the
expansion (11) to be valid, Dx*p’ with k + [ < 4 has to be
small. The above expansion thus accurately describes the
center part of the PSPDF for small D. To first order, the
resulting PSPDF is [33]
P
e 2

P(x,p) = 1+

D
354+ 1872 — 27
27 103 g OF 18

+ (@4p3x - 12pX)Q + (3(p* + 3%)? —24)Q%) |.
(12)

In practice, we perform the expansion up to order D3;
the resulting expression agrees with simulations of the
PSPDF and the small-energy behavior of the marginal
energy distribution Pr(E) (see Fig. 1). The PSPDF has a
number of interesting features. For large frequencies
Q> 1, Eq. (12) can be expressed as a function of the
Hamiltonian H (X, p) = (p* + X?)/2, which corresponds to
the underdamped limit (6). Contrary to the underdamped
approximation, this small noise, small energy expansion
places no restrictions on , allowing us to explore the
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FIG. 3 (color online). Average potential and kinetic energy for
D = 0.1 from the third-order small-D expansion as a function of
trap frequency. The kinetic energy of a free particle without the
potential is shown for comparison. Inset: ratio of potential and
kinetic energy. For large frequencies, the energy is equally
distributed between the potential and kinetic degree of freedom.
For small frequencies, the potential energy is larger than the
kinetic one. The symbols are the results of numerical simulations;
discrepancies in the theoretical curves are due to the truncation of
the expansion. Being the result of an expansion, the deviations
from equipartition shown here are naturally small; however, a
much larger effect can be found for larger D using numerical
simulations [33].

overdamped regime Q < 1. There, equipartition breaks
down. Instead, we find that the average potential energy is
larger than the kinetic one, while both the kinetic and
potential energy and thus the total energy of the system
increases as Q — 0, i.e., ® — 0, see Fig. 3. This is in stark
contrast to the case of linear friction, where the BG
distribution factorizes into a position- and momentum-
dependent part, Ppg(x, p) = P,(x)P,(p); the energy of
the system is always equidistributed between kinetic and
potential energy and the total energy is independent of the
frequency. The limit  — 0 and the stationary limit  — oo
do not commute; we assume that the latter is taken first.
Even for very low frequencies, the average kinetic energy is
reduced (compared to the free particle case, dashed line in
Fig. 3) by introducing the confining potential, supporting
the notion that confinement increases the effectiveness of
the cooling mechanism [28,33]. The breakdown of equi-
partition means that the temperature of the system is not
uniquely defined, with different effective temperatures
governing the kinetic and potential degrees of freedom.
Discussion.—We have investigated the statistical
mechanics of cold atoms subject to Sisyphus cooling
and a harmonic confinement in different regimes. From
an experimental point of view, care needs to be taken when
assigning a temperature to the particle cloud, as the latter—
if interpreted in terms of kinetic energy—is generally not
equal to the atoms’ potential energy. In a recent experiment
[14], the atoms were equilibrated with the lattice in a
dipole trap, before being released in order to measure their
superdiffusive motion. The trapping phase corresponds
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precisely to the situation discussed in this Letter, with Q <«
land 1/5 < D < 1/3. This demonstrates that the parameter
regime where the deviations from BG statistics are relevant
is accessible in experiment. The condition Q < 1 is in fact
an experimental requirement, since the semiclassical
description of Sisyphus cooling breaks down when the
atoms are confined on length scales of the order of the
lattice wavelength [4]. For typical parameters accessible in
experiments (see the Supplemental Material for details
[33]), we estimate Q < 10~ and find sizable deviations
from energy equipartition (E,) ~ 3(Ey) from numerical
simulations. Further, our estimations show that a steady
state kinetic temperature 3 times lower than the minimal
value attainable for free atoms may be realized [33].

Let us come back to the questions we posed in the
beginning. Is the PSPDF a function of the Hamiltonian?
In the three limiting cases discussed above—namely, for
large frequencies, large energies, and small D—the answer
to leading order is yes. The underdamped limit, which
generally requires large frequencies, also describes the
large energy behavior for arbitrary frequencies and the
power-law tails of the PSPDF P(x, p) ~ [H(x, p)]~'/? are
universal. The physical reason for this is that dissipation is
weak for fast particles due to the nonlinear friction force. Is
the PSPDF given by BG or Tsallis statistics? Here, the
answer is affirmative only for deep lattices D — 0, where
the PSPDF reduces to the BG result. How does the PSPDF
deviate from thermostatic statistics? As the corrections to
the leading order results cannot be expressed as a function
of the Hamiltonian, equal energy does not imply equal
probability, in contrast to thermostatic statistics [19]. The
corrections lead to deviations from equipartition and
lower the kinetic energy; both effects are sizable for
realistic experimental parameters [33] and should be the
subject of experimental study or more microscopic quan-
tum-mechanical simulations. In summary, the steady state
of confined, Sisyphus-cooled atoms is an intricate non-
equilibrium state, which obeys thermostatic principles in
specific limits. Beyond these limits, we find rich physics
with promising applications to experiments.
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