Prof. Aviad Frydman

Prof. Aviad Frydman


Experimental study of the electric properties of low dimensional and nano systems, focusing on superconducting and ferromagneting materials. The systems under study include ultrathin films, nanowires, quantum dots, tunnel junctions and nanoparticles. The various research projects deal with the effect of   geometry, size and disorder on the electric and magnetic properties of these systems.


  • Personal: Date of Birth: 09/02/64, Melbourne Australia
  • Arrived in Israel: 19/11/64
  • Married, 4 children.
  • Academic Background:
  • 1987-1990 B.Sc. (cum laude), Physics and Mathematics, Hebrew University of Jerusalem.
  • 1990-1992 M.Sc. (cum laude), Physics, Hebrew University of Jerusalem.
  • Thesis: “The Influence of Film Thickness on the Electric Transport of Disordered Insulators”. Supervisor: Prof. Zvi Ovadyahu.
  • 1992-1996: Ph.D. (distinction), Physics, Hebrew University of Jerusalem.
  • Thesis: Quantum Mechanical Tunneling in the Presence of Intermediate States. Supervisor: Prof. Zvi Ovadyahu.
  • Experience:
  • 1992-1996 Teaching assistant Hebrew University, Jerusalem
  • 1996-1999 Post Doctoral Researcher University of California, San Diego
  • 1999- present Senior Lecturer Bar Ilan University
  • Academic Awards and Distinctions:
  • 1987 Dean’s undergraduate Scholarship
  • 1987-1990 “Amirim Program” for excellent students
  • 1991 Rector’s graduate scholarship
  • 1994 Excellence Prize in honor of Alza Wiener
  • 1995-1996 “Charles Clore” Research Scholarship
  • 1996 Hebrew University post-doctoral scholarship
  • 1997 “Max Shlimiak” scholarship.
  • 1999 “Pollak” fund scholarship
  • Invited Talks:
  • 1995: “Sub-Harmonic Gap Structure in SIS junctions”, The Israeli Physical Society Meeting, Bar-Ilan University, Israel.
  • 1996: “Andreev Tunneling through Anderson Insulators”, 6th International Conference on Hopping and Related Phenomena, Jerusalem, Israel.
  • 1997: “Conductance Fluctuations in Mesoscopic Granular Superconductors”, International Conference on Mesoscopic and Strongly Correlated Systems, Chernagolovka, Russia.
  • 1998 "Andreev Reflections in Disordered Media", American Physical Society meeting, Los Angeles.
  • 1999 “The proximity effect in granular ferromagnets”, 8th International conference on Hopping and Related Phenomena, Murcia, Spain.
  • 2000 “Excess conductance in normal metal-superconductor Interfaces”, 2nd International Conference on Mesoscopic and Strongly Correlated Systems, Chernagolovka, Russia.
  • “Excess Andreev conductivity through Anderson Insulators”, 2nd Israel-Japan conference, Tokyo, Japan.
  • ‏2001 “The superconductor Insulator transition in systems of ultrasmall grains”, Minerva conference, Dead Sea, Israel
  • 2002 “The superconductor Insulator transition in systems of ultrasmall grains”, Israel-India condensed matter meeting, Jerusalem.
  • Conference Organizer and chair:
  • ‏2001 9th International conference on Hopping and Related Phenomena, Shefayim, Israel.
  • Grants
  • 1999 “Nonostructure fabrication and characterization facility” (equipment grant) Israel Science Fund (ISF)
  • 2000 “Low dimensional magnetism” Binational Israel-USA Science Fund (BSF) “Lithography center for new immigrants”
  • Ministry of Science (MOS) ‏2001 “Helium liquefier” (equipment grant) Israel Science Fund (ISF)



  1. “Evidence for fractal behavior in a hopping system”  A. Frydman, O. Cohen and Z. Ovadyahu, Solid State Commun. 83, 249 (1992).
  2. “Spin and Quantum Interference Effects in Hopping Conductivity”, A. Frydman and  Z. Ovadyahu, Solid State Comm. 94, 745-749 (1995).
  3. “Josephson Coupling Mediated by Quantum Diffusion”,  A. Frydman and  Z. Ovadyahu, Solid State Comm. 95, 79-83 (1996).
  4. “Andreev Reflections in Anderson Insulators”,  A. Frydman and  Z. Ovadyahu, Europhysics Letters, 33, 217-222 (1996).
  5. “High Field Magneto-Conductance in Anderson Insulators”, A. Vaknin, A. Frydman, Z. Ovadyahu and M. Pollak, Phys. Rev. B54, 13604-13610 (1996).
  6. “Charge Transport through Superconductor/Anderson Insulator Interfaces”,
  7. A. Frydman and  Z. Ovadyahu, Phys. Rev. B55, 9047-9057 (1997).
  8. “Mesoscopic Phenomena in Disordered Superconductors”, A. Frydman, E.P. Price and R.C. Dynes, Physics Uspekhi 168 (2), 237-240 (1998).
  9. “Conductance Fluctuations in Mesoscopic Granular Superconductors”  A. Frydman, E.P. Price and R.C. Dynes, Solid State Comm. 106, 715-719 (1998).
  10. “Disorder Induced Andreev Reflections in Granular Metals”,  A. Frydman and R.C. Dynes, Phys. Rev. B59, 8432-8435 (1999).
  11. “Magnetoresistance of Granular Ferromagnets – Observation of a Magnetic Proximity Effect?” A. Frydman and R.C. Dynes, Sol. State Comm. 110, 485-490 (1999).
  12. “Excess Conductance in Superconductor-Normal Metal Interfaces”, A. Vaknin, A. Frydman and Z. Ovadyahu, Phys. Rev. B61, 13037 (2000).
  13. “Superparamagnetism in Discontinuous Ni Films”, A. Frydman, T.L. Kirk and R.C. Dynes, Solid State Commun. 114, 481 (2000).
  14. “Proximity Effects in Granular Superconductors and Magnets” A. Frydman, L.M. Marchant and R.C. Dynes, Physica Status Solidi B 218, 173 (2000).
  15. "Granular Superconductors and Ferromagnets, a Proximity Effect Based Analogue”, A. Frydman and R.C. Dynes, Phil. Mag. 81, 1153 (2001).
  16. “Inverse Proximity Effect in a Strongly Correlated Electron System”, O. Bourgeois, A Frydman and Robert C. Dynes, Phys. Rev. Lett. 88, 186403 (2002).
  17. “Universal transport in 2D granular superconductors”, A. Frydman, O. Naaman and R.C. Dynes,  Phys. Rev. B66 052509 (2002)
  18. “The proximity effect in systems of ultra-small grains”, A Frydman, Phys. Stat. Sol. (b) 230, 127 (2002).
  19. “Spreading of a mercury droplet on thin gold films”, A. Be’er , Y. Lereah , A. Frydman and H. Teitelbaum, Physica A 314, 325 (2002).
  20. “The Superconductor Insulator Transition in Systems of Ultrasmall Grains”,
  21. A. Frydman, Physica C, 391, 189 (2003).
  22. “Proximity effect in ultrathin Pb/Ag multilayers within the Cooper limit”, 
  23. O. Bourgeois, A Frydman and R. C. Dynes, Phys. Rev. B, 68, 092509 (2003).
  24.  “Crossover from 2D to 3D magnetic disorder in sub-mono-atomic ferromagnetic layers” A. Frydman and R.C. Dynes, Phys. Rev. B68, rapid communications, 100408(R) (2003).
  25. “Magneto-transport properties of dilute granular ferromagnets”, A. Cohen, A. Frydman and R. Berkovits, Solid State Commun., 129/5, 291 (2004).
  26.  “Magneto-mechanical effects in nano-magnets”, A. Cohen and A. Frydman, Physica Status Solidi. (C), 1/1, 33 (2004).
  27. “Encapsulating a superconductor material, MgCNi3, in a Carbon Nanoflask” R.K. Rana, V.G. Pol, I. Felner, E. Meridor, A. Frydman and A. Gedanken, Advanced Materials, 16(12), 972 (2004).
  28. “Combining nano-mechanics and magneto-electronics in systems of granular Ni”. A. Cohen, D. Radovsky, D. Barness and A. Frydman, International Journal of Nanoscience, 3, 381 (2004).
  29. Percolation transition in a two-dimensional system of Ni granular ferromagnets, Y.M. Strelinker, Richard Berkovits, A. Frydman and S. Havlin, Phys. Rev. E., rapid communications, 69, 065105(R) (2004).
  30. "Memory in a magnetic nanoparticle system: Polidispersity and interaction effects" , S. Chakravarty, M. Bandyopadhyay, S. Chatterjee, S. Dattagupta, A. Frydman, S. Sengupta and P.A. Sreeram, Phys. Rev. B71., 054401 (2005).
  31. “Utilizing hidden Markov processes as a new tool for experimental physics”, I Kanter A. Frydman and A. Ater, Europhysics Letters, 69, 798 (2005).
  32.  “Is a multiple excitation of a single atom many times equivalent to a single excitation of an ensemble of atoms”, I. Kanter, A. Frydman and A Ater, Europhysics Letters, 69 874 (2005).
  33. “Zero-field resistance dip in magnetic tunnel junctions employing a granular electrode.” D. Barness and A. Frydman, Phys. Rev. B72, 012413 (2005).
  34. "Fabrication and magnetic properties of Ni nanospheres encapsulated in a fullerene - like carbon", V. G. Pol, S. V. Pol, A. Frydman, G. N. Churilov, and A. Gedanken, Journal of Physical Chem. B, 109, 9495 (2005).
  35. "The effect of lithography processing on the I-V characteristics of Al-Al2O3-Ag junctions", A. Kreimer and A. Frydman, J. Appl. Phys., 97, 124502 (2005).
  36. "Resistance distribution in the hopping percolation model", Y.M. Strelniker, S. Havlin, R. Berkovits and A. Frydman, Phys. Rev. E 72, 016121 (2005).
  37. "The role of ultrasmall grains in a granular ferromagnets", A.Y. Dokow, D. Barness and A. Frydman, International Journal of Nanoscience, 4, 887 (2005).
  38. "Magnetoresistance of mesoscopic granular ferromagnets", A.Y. Dokow, H. Vilchik and A. Frydman, Phys. Rev. B72, 094402 (2005).
  39. “The synthesis and magnetic properties of monodispersed single domain nickel nanospheres and highly globular nanostructures of NicoreNiOshell“, D. Liu, E. Meridor, A. Frydman and A. Gedanken, J. Mag. Mag Mat., 301, 13 (2006).
  40. "Magnetic coding in systems of nano-magnetic particles", S. Chakraverty,   B. Ghosh, S. Kumar and A. Frydman, Applied Physics Letters, 88, 042501 (2006).  
  41. "The signature of a double quantum-dot structure in the I-V characteristics of a complex system", L. Bitton, D. Radovsky, A. Cohen, A. Frydman and R. Berkovits, Phys. Rev. B73, 035331 (2006).
  42. "Tunable metallic quantum dots", L. Bitton and A. Frydman, Applied physics letters, 88, 113113 (2006).
  43. "Phase transition from the ferromagnetic to superparamagnetic with a loop shift in 5-nm nickel particles", XS Liu, K Huang, SQ  Zhou, P. Zhao, U. Meridor, A. Frydman and A. Gedanken, , J. Mag. Mag Mat., 305, 504 (2006).
  44. "Magneto-transport in ferromagnetic granular networks", H. Vilchik, A. Frydman and R. Berkovits,  Physica Status Solidi c, 3, 288 (2006)
  45. " Hopping percolation transition in granular ferromagnets", Y.M.  Strelniker, S. Havlin, R. Berkovits R and A. Frydman. J. Appl. Phys., 99, 08P205 (2006).
  46. "Superconducting niobium nanowire single photon detectors" A. J. Annunziata, A. Frydman, M. O. Reese, L. Frunzio, M. Rooks and  D. E. Prober, Proc. of SPIE 6372 63720V-7 (2007)
  47. "Inverse slow relaxation in granular hopping systems", N. Kurzweil and A. Frydman, Phys. Rev B., rapid communications, 75 020202(R) (2007).
  48. " Spreading of Mercury droplets on thin Silver films at room temperature" A. Beer, Y. Lereah, A. Frydman and H. Taitelbaum, Phys. Rev. E, 75 051601 (2007).
  49. "Effective medium approximation for hopping conductivity and Josephson junctions", Y. M. Strelniker, S. Havlin and A. Frydman, Physica B, 394, 368 (2007).
  50. “Percolation model for the superconductor-insulator transition in granular films”, Y. M. Strelniker, A. Frydman  and S. Havlin , Phys. Rev. B76, 224528 (2007).
  51. Mesoscopic effects in macroscopic granular systems, A. Cohen and A. Frydman, Journal of Physics: Condensed Matter, 20, 075234 , (2008).
  52. “Properties of Doped Manganese Oxides and the Origin of Colossal Magnetoresistance”, D. I. Golosov, N. Ossi, A. Frydman, I. Felner, I. Nowik, D. Orgad, M. I. Tsindlekht, Y. M. Mukovskii, Europhysics letters, 84, 47006 (2008).
  53. "Niobium superconducting nanowire single-photon detectors", A. J. Annunziata, D. F. Santavicca, J. D. Chudow, L. Frunzio, M. J. Rooks, A. Frydman and D. E. Prober. IEEE transactions on superconductivity, 19, 327 (2009).
  54. "Fabrication of electro optical nano modulator on silicon chip" O. Limon, L. Businaro, A. Gerardino, L. Bitton , A. Frydman , Z. Zalevsky.  Microelectronic Engineering 86, 1099, (2009).  
  55. "Itinerant Ferromagnetism in the limit of electron localization", N. Kurtzweil, E. Kogan and A. Frydman, Phys. Rev. Lett. 102, 096603 (2009).
  56. "Niobium Superconducting Nanowire Single-Photon Detectors", A.J. Annunziata, D.F. Santavicca, J.D. Chudow, L. Frunzio, M.J. Rooks, A. Frydman and D.E. Prober, IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 19 , 327 (2009)
  57.  "Design and Fabrication of 1 × 2 Nanophotonic Switch" Asaf Shahmoon, Maoz Birenboim, Aviad Frydman, and Zeev Zalevsky, J. Nanotechnology, 2010, 953212 (2010)
  58. "Tunable superconducting nanoinductors", Anthony Annunziata, Daniel Santavicca, Luigi Frunzio, Gianluigi Catelani, Michael Rooks, A Frydman and Daniel E Prober, Nanotechnology, 21, 445202 (2010).
  59. "All-optical nano modulator, sensor, wavelength converter, logic gate, and flip flop based on a manipulated gold nanoparticle", Asaf Shahmoon, Yoed Abraham, Ofer Limon, Liora Bitton, Aviad Frydman, Ron Unger and Zeev Zalevsky, J. Nanophotonics, 4, 041780 (2010).
  60. "Reset dynamics and latching in niobium superconducting nanowire single-photon detectors, A. J. Annunziata, O. Quaranta, D. F. Santavicca, A. Casaburi, L. Frunzio, M. Ejrnaes, M. J. Rooks, R. Cristiano, S. Pagano, A. Frydman, D. E. Prober, J. Appl. Phys, 108, 084507 (2010).  
  61. "Absence of weak antilocalization in ferromagnetic films", N. Kurzweil, E. Kogan and A. Frydman, Phys. Rev. B, 82, 235104 (2010).
  62. "Coexistence of Coulomb blockade and zero bias anomaly in a strongly coupled nanoparticle" , L. Bitton, D.B. Gutman, R. Berkovits and A. Frydman, Phys. Rev Lett. 106, 016803 (2011)
  63.  “Disorder induced superconducting ratchet effect in nanowires”, S. Poran, E. Shimshoni and A. Frydman, Phys. Rev. B 84, 014529 (2011).
  64. “Extended object tunneling: Current-carrying states of Abrikosov vortices in a superconductor with artificial nanobarriers”, B. Rosenstein, I. Shapiro, B. Ya. Shapiro, Dingping Li, A. Frydman, S. Poran, and D. Berco, Phys. Rev. B 85, 054512 (2012).
  65. “A Superconducting Gap in an Insulator”,  D. Sherman, G. Kopnov, D. Shahar and A. Frydman,  Phys. Rev. Lett. 108, 177006 (2012).
  66. “Ulta-slow relaxation in discontinuous-film based electron glasses”, T. Havdala, A. Eisenbach, and A. Frydman,  Euro Phys. Lett., 98, 67006 (2012)
  67. “The Electron Glass”, M. Pollak, M. Ortuno and A. Frydman, Cambridge University press (2012)
  68. “Zero bias anomaly in a two dimensional granular insulator”, N. Ossi, L. Bitton, D.B. Gutman, and A. Frydman, Phys. Rev. B.,  87, 115137 (2013).
  69. “Periodic negative magnetoresistance in granular YBa2Cu3O7−δ nanowires",  D. Levi, A. Shaulov, A.Frydman, G.Koren, B. Ya. Shapiro and Y. Yeshurun, Euro Physics Lett., 101, 67005 (2013).
  70. " Tunneling Density of States of Indium Oxide Films Through the Superconductor to Insulator Transition", D. Sherman, G. Kopnov, E. Farber, D. Shahar and A. Frydman. J. superc. And novel Magn. 26, 1473, 2013.
  71. "Electrostatic tuning of the properties of disordered indium-oxide films near the superconductor-insulator transition", Y. Lee, A. Frydman, T.R. Chen, B. Skinner, and A.M. Goldman, Phys. Rev.B. 88, 024509 (2013)


86-385: Laboratory in applied physics

86-386: Advanced laboratory in physics


  • Skills and Fields of Experience:
  • Thin film growth: Thermal evaporation, e-beam evaporation UHV techniques and quench-condensation methods.
  • Advanced Lithography: Electron beam nano-lithography and Photo-lithography, ion milling, reactive ion milling, chemical etching and other processing techniques applicable to sub-micron electronics.
  • Microscopy: Scanning and transmission electron microscopy, scanning tunneling microscopy (STM) and atomic force microscopy (AFM).
  • Low Temperature: Cryogenic measurement techniques, low noise measurements, dc and ac (lock-in) techniques, high field magneto-transport measurements